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PART ONE 
INTRODUCTION TO STRUCTURAL 

ANALYSIS AND STRUCTURAL LOADS 



Chapter 1 

Introduction to Structural Analysis 
 
1.1 Structural Analysis Defined 
 
A structure, as it relates to civil engineering, is a system of interconnected members used to support 
external loads. Structural analysis is the prediction of the response of structures to specified 
arbitrary external loads. During the preliminary structural design stage, a structure’s potential 
external load is estimated, and the size of the structure’s interconnected members are determined 
based on the estimated loads. Structural analysis establishes the relationship between a structural 
member’s expected external load and the structure’s corresponding developed internal stresses and 
displacements that occur within the member when in service. This is necessary to ensure that the 
structural members satisfy the safety and the serviceability requirements of the local building code 
and specifications of the area where the structure is located.   
 
1.2 Types of Structures and Structural Members 
 
There are several types of civil engineering structures, including buildings, bridges, towers, arches, 
and cables. Members or components that make up a structure can have different forms or shapes 
depending on their functional requirements. Structural members can be classified as beams, 
columns and tension structures, frames, and trusses. The features of these forms will be briefly 
discussed in this section. 
 
1.2.1 Beams 
 
Beams are structural members whose longitudinal dimensions are appreciably greater than their 
lateral dimensions. For example, the length of the beam, as shown in Figure 1.1, is significantly 
greater than its breadth and depth. The cross section of a beam can be rectangular, circular, or 
triangular, or it can be of what are referred to as standard sections, such as channels, tees, angles, 
and I-sections. Beams are always loaded in the longitudinal direction.  
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Fig.  1.1.  Beam. 



1.2.2 Columns and Tension Structures 
 
Columns are vertical structural members that are subjected to axial compression, as shown in 
figure 1.2a. They are also referred to as struts or stanchions. Columns can be circular, square, or 
rectangular in their cross sections, and they can also be of standard sections. In some engineering 
applications, where a single-member strength may not be adequate to sustain a given load, built-
up columns are used. A built-up column is composed of two or more standard sections, as shown 
in Figure 1.2b. Tension structures are similar to columns, with the exception that they are subjected 
to axial tension.     
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Fig.  1.2.   Columns. 
 
 

ሺ𝑏ሻ 

ሺ1ሻ ሺ2ሻ ሺ3ሻ ሺ4ሻ 

ሺ5ሻ

ሺ6ሻ ሺ7ሻ 
ሺ8ሻ 

Standard sections: ሺ1ሻ channel, ሺ2ሻ tee, ሺ3ሻ angle, and ሺ4ሻ 
wide flange beam; Built-up sections: ሺ5ሻ four angles and a 
plate, ሺ6ሻ two channels ሺfront-to-frontሻ, ሺ7ሻ two channels 
ሺback-to-backሻ, and ሺ8ሻ four angles ሺfront-to-frontሻ.

1.2.3 Frames 
 
Frames are structures composed of vertical and horizontal members, as shown in Figure 1.3a. The 
vertical members are called columns, and the horizontal members are called beams. Frames are 
classified as sway or non-sway. A sway frame allows a lateral or sideward movement, while a non-
sway frame does not allow movement in the horizontal direction. The lateral movement of the 
sway frames are accounted for in their analysis. Frames can also be classified as rigid or flexible. 
The joints of a rigid frame are fixed, whereas those of a flexible frame are moveable, as shown in 
Figure 1.3b.  
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Fig.  1.3.  Frame. 

ሺ1ሻ ሺ2ሻ 

Types of Frame Joints ሺ1ሻRigid or fixed joint 
ሺ2ሻ Flexible or pinned joint 

ሺ𝑏ሻ

1.2.4 Trusses 
 
Trusses are structural frameworks composed of straight members connected at the joints, as 
shown in Figure 1.4. In the analysis of trusses, loads are applied at the joints, and members are 
assumed to be connected at the joints using frictionless pins.  
 
 
 
 
 
 

 

 

 

Fig.  1.4.  Truss. 

1.3 Fundamental Concepts and Principles of Structural Analysis 

 
1.3.1 Equilibrium Conditions 
 
Civil engineering structures are designed to be at rest when acted upon by external forces. A 
structure at rest must satisfy the equilibrium conditions, which require that the resultant force and 



the resultant moment acting on a structure be equal to zero. The equilibrium conditions of a 
structure can be expressed mathematically as follows: 
 
     ∑ 𝐹 ൌ 0, and ∑ 𝑀 ൌ 0                                                                                                         (1.1)                          
 
1.3.2 Compatibility of Displacement 
 
The compatibility of displacement concept implies that when a structure deforms, members of the 
structure that are connected at a point remain connected at that point without void or hole. In other 
words, two parts of a structure are said to be compatible in displacements if the parts remain fitted 
together when the structure deforms due to the applied load. Compatibility of displacement is a 
powerful concept used in the analysis of indeterminate structures with unknown redundant forces 
in excess of the three equations of equilibrium. For an illustration of the concept, consider the 
propped cantilever beam shown in Figure 1.5a. There are four unknown reactions in the beam: the 
reactive moment, a vertical and horizontal reaction at the fixed end, and another vertical reaction 
at the prop at point B. To determine the unknown reactions in the beam, one more equation must 
be added to the three equations of equilibrium. The additional equation can be obtained as follows, 
considering the compatibility of the structure: 
 

                                                                                                                                                  (1.2) 

 In this equation, ∆஻௉ is the displacement at point B of the structure due to the applied load 𝑃 
(Figure 1.5b), and ∆஻ோ is the displacement at point B due to the reaction at the prop R (Figure 
1.5c). Students should always remember that the first subscript of the displacement indicates the 
location where the displacement occurs, while the second subscript indicates the load causing the 
displacement.  P 
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∆𝐵𝑅  

Fig.  1.5.  Propped cantilever beam. 
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1.3.3 Principle of Superposition 
 
The principle of superposition is another very important principle used in structural analysis. The 
principle states that the load effects caused by two or more loadings in a linearly elastic structure 
are equal to the sum of the load effects caused by the individual loading. For an illustration, 
consider the cantilever beam carrying two concentrated loads 𝑃ଵ, and 𝑃ଶ,  in Figure 1.6a. Figures 
1.6b and 1.6c are the responses of the structure in terms of the displacement at the free end of the 
beam when acted upon by the individual loads. By the principle of superposition, the displacement 
at the free end of the beam is the algebraic sum of the displacements caused by the individual 
loads. This can is written as follows: 
                                                                                                                                                   (1.3)                          

                                                                         

 

In this equation, ∆஻ is the displacement at B; ∆஻௉భ
 and ∆஻௉మ

 are the displacements at B caused by 

the loads 𝑃ଵ and 𝑃ଶ,  respectively. 
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Fig.  1.6.  Application of the principle of superposition. 



1.3.4 Work-Energy Principle 
 
The work-energy principle is a very powerful tool in structural analysis. Work is defined as the 
product of the force and the distance traveled by the force, while energy is defined as the ability to 
do work. Work can be transformed into various energy, including kinetic energy, potential energy, 
and strain energy. In the case of a structural system, based on the law of conservation of energy, 
work done 𝑊 is equal to the strain energy U stored when deforming the system. This is expressed 
mathematically as follows: 
                                                   𝑊 ൌ 𝑈                                                                                   (1.4) 

Consider a case where a force F is gradually applied to a deformable structural system. By plotting 
the applied force against the deformation ∆ of the structure, the load-deformation plot shown in 
Figure 1.7a is created. In the case of linearly elastic structure, the load-deformation diagram will 
be as shown in Figure 1.7b. The incremental work done 𝑑𝑊 by the force when deforming the 
structure over an incremental displacement 𝑑∆ is expressed as follows: 

                                            𝑑𝑊 ൌ 𝐹𝑑∆                                                                                    (1.5) 

    The total work done is represented as follows: 

                                              𝑊 ൌ ׬ 𝑑𝑊 ൌ ׬ 𝐹𝑑∆
∆

଴
∆

଴                                                                (1.6) 

    Thus, the strain energy is written as follows: 

                                             𝑈 ൌ ׬ 𝐹𝑑∆
∆

଴                                                                                  (1.7) 

The strain energy in the case of linearly elastic deformation can be obtained by computing the area 
under the load-deformation diagram in Figure 1.7b. This is expressed as follows: 

                                             𝑈 ൌ భ
మ
𝐹∆                                                                                      (1.8) 
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Fig.  1.7. Load-deformation diagram.



1.3.5 Virtual Work Principle 
 
The virtual work principle is another powerful and useful analytical tool in structural analysis. It 
was developed in 1717 by Johann Bernoulli. Virtual work is defined as the work done by a virtual 
or imaginary force acting on a deformable body through a real distance, or the work done by a real 
force acting on a rigid body through a virtual or fictitious displacement. To formulate this principle 
in the case of virtual displacements through a rigid body, consider a propped cantilever beam 
subjected to a concentrated load P at a distance 𝑥 from the fixed end, as shown in Figure 1.8a. 
Suppose the beam undergoes an elementary virtual displacement 𝛿𝑢 at the propped end, as shown 
in Figure 1.8b. The total virtual work performed is expressed as follows: 
 
                                𝛿𝑊 ൌ 𝑅஻𝛿௨ െ 𝑃೉

ಽ
𝛿𝑢                                                                                (1.9) 

Since the beam is in equilibrium, 𝛿𝑊 ൌ 0 (by the definition of the principle of virtual work of a 
body). 

The principle of virtual work of a rigid body states that if a rigid body is in equilibrium, the total 
virtual work performed by all the external forces acting on the body is zero for any virtual 
displacement.  
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Fig.  1.8. Propped cantilever beam.

1.3.6 Structural Idealization 
 
Structural idealization is a process in which an actual structure and the loads acting on it are 
replaced by simpler models for the purpose of analysis. Civil engineering structures and their loads 



are most often complex and thus require rigorous analysis. To make analysis less cumbersome, 
structures are represented in simplified forms. The choice of an appropriate simplified model is a 
very important aspect of the analysis process, since the predictive response of such idealization 
must be the same as that of the actual structure. Figure 1.9a shows a simply supported wide-flange 
beam structure and its load. The plan of the same beam is shown in Figure 1.9b, and the idealization 
of the beam is shown in Figure 1.9c. In the idealized form, the beam is represented as a line along 
the beam’s neutral axis, and the load acting on the beam is shown as a point or concentrated load 
because the load occupies an area that is significantly less than the total area of the structure’s 
surface in the plane of its application. Figures 1.10a and 1.10b depict a frame and its idealization, 
respectively. In the idealized form, the two columns and the beam of the frame are represented by 
lines passing through their respective neutral axes. Figures 1.11a and 1.11b show a truss and its 
idealization. Members of the truss are represented by lines passing through their respective neutral 
axes, and the connection of members at the joints are assumed to be by frictionless pins. 
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Fig.  1.9.  Wide െ flange beam idealization.

ሺcሻ Idealized beam
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Fig.  1.10.  Frame idealization. 



 

 

 

 

 

  Fig.  1.11. Truss idealization. 
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1.3.7 Method of Sections 
 
The method of sections is useful when determining the internal forces in structural members that 
are in equilibrium. The method involves passing an imaginary section through the structural 
member so that it divides the structure into two parts. Member forces are determined by 
considering the equilibrium of either part. For a beam in equilibrium that is subjected to transverse 
loading, as shown in Figure 1.12, the internal forces include an axial or normal force, N, shear 
force, V, and bending moments, M.  
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Fig.  1.12.  Beam in equilibrium subjected to transverse loading. 

1.3.8 Free-Body Diagram 
 
A free-body diagram is a diagram showing all the forces and moments acting on the whole or a 
portion of a structure. A free-body diagram must also be in equilibrium with the actual structure. 



The free-body diagram of the entire beam shown in Figure 1.13a is depicted in Figure 1.13b. If the 
free-body diagram of a segment of the beam is desired, the segment will be isolated from the entire 
beam using the method of sections. Then, all the external forces on the segment and the internal 
forces from the adjoining part of the structure will be applied to the isolated part. 
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Fig.  1.13 Freebody diagram of a beam. 

1.4 Units of Measurement 

 
The two most commonly used systems in science and technology are the International System of 
Units (SI Units) and the United States Customary System (USCS). 
 
 
 
1.4.1 International System of Units 
 
In the SI units, the arbitrarily defined base units include meter (m) for length, kilogram (kg) for 
mass, and second (s) for time The unit of force, newton (N), is derived from Newton’s second law. 
One newton is the force required to give a kilogram of mass an acceleration of 1 m/s2. The 
magnitude, in newton, of the weight of a body of mass m is written as follows: 
 
                                 W (N) = m (kg) x g (m/s2) 

where 
 
g = 9.81 m/s2 

 
1.4.2 United States Customary System 
 
In the United States Customary System, the base units include foot (ft) for length, second (s) for 
time, and pound (lb) for force. The slug for mass is a derived unit. One slug is the mass accelerated 
at 1 ft/s2 by a force of 1 lb. The mass of a body, in slug, is determined as follows: 
 

                                  m (slugs) =  
ௐ ሺ௟௕ሻ

௚ ሺ೑೟
ೞమሻ

 , where g = 32.2 ft/s2  



The two systems of units are summarized in Table 1.1 below. 

Table 1.1. Comparison of unit measurement systems. 

Quantity Length Time Mass Force 
Dimensional Symbol L T M F 
U.S. Customary Units foot (ft) second (s)         Slug pound (lb) 
SI Units meter (m) second (s) kilogram (kg) Newton (N) 

 

 

Table 1.2. Unit conversion. 
 
Quantity U.S. Customary Unit Equal SI Unit 
Acceleration 
Area 
Density 
Energy, Work 
Force 
 
Impulse 
Length 
 
Mass 
Moment of a couple 
 
Moment of inertia of area 
 
Moment of inertia of mass  
Momentum 
Power 
Pressure 
 
Velocity 
Volume of an object 
Volume of a liquid 
 

ft/s2 
in2 
lb/ft3 
in.lb 
lb 
kip 
lb.s 
in 
ft 
Slug 
lb.in 
k.ft 
in4 

ft4 
lb.ft.s2 
lb.s 
ft.lb/s 
psi 
ksi 
ft/s 
ft3 
gal 
 

 0.3048 m/s2 
645.2 mm2 
16.02 kg/m3 
0.113 N.m (Joule, J) 
4.448 N 
4.448 kN 
4.448 N.s 
25.4 mm 
0.3048 m 
14.59 kg 
0.113 N.m 
1356 N.m 
0.4162 × 10-6 m4 

8.6303 x  10-3 m4 
1.356 kg.m2 
4.448 kg.m/s 
1.356 W 
6.895 kPa 
6.895 MPa 
0.3048 m/s 
0.02832 m3 
3.785 L 

  
1.4.3 SI Prefixes 
 
Prefixes are used in the International System of Units when numerical quantities are quite large or 
small. Some of these prefixes are presented in Table 1.3. 
 

 



Table 1.3. SI prefixes. 

Multiplication Factor Exponential Form Prefix Symbol 
1 000 000 000 000 1012 Tera T 
1 000 000 000 109 Giga G 
1 000 000 106 Mega M 
1 000 103 Kilo K 
0.001 10-3 Milli M 
0.000 001 10-6 Micro Μ 
0.000 000 001 10-9 Nano N 

 
 

 Chapter Summary 

Introduction to structural analysis: Structural analysis is defined as the prediction of structures’ 
behavior when subjected to specified arbitrary external loads. 

Types of structures: Structural members can be classified as beams, columns and tension 
structures, frames, and trusses. 
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Fundamental concepts of structural analysis:  The fundamental concept and principles of 
structural analysis discussed in the chapter include equilibrium conditions, compatibility of 
displacement, principle of superposition, work-energy principle, virtual work principle, structural 
idealization, method of sections, and free-body diagram. 

  



Chapter 2 

Structural Loads and Loading System 

2.1 Types of Structural Loads 
 
Civil engineering structures are designed to sustain various types of loads and possible 
combinations of loads that could act on them during their lifetime. Accurate estimation of the 
magnitudes of these loads is a very important aspect of the structural analysis process. There are 
local and international codes, as well as research reports and documents, that aid designers in this 
regard. Structural loads can be broadly classified into four groups: dead loads, live loads, impact 
loads, and environmental loads. These loads are briefly described in the following sections.       
 
2.1.1 Dead Loads 
 
Dead loads are structural loads of a constant magnitude over time. They include the self-weight of 
structural members, such as walls, plasters, ceilings, floors, beams, columns, and roofs. Dead loads 
also include the loads of fixtures that are permanently attached to the structure. Prior to the analysis 
and design of structures, members are preliminarily sized based on architectural drawings and 
other relevant documents, and their weights are determined using the information available in most 
codes and other civil engineering literature. The recommended weight values of some commonly 
used materials for structural members are presented in Table 2.1. The determination of the dead 
load due to structural members is an iterative process. During design, member sizes and weight 
could change, and the process is repeated until a final member size is obtained that could support 
the member’s weight and the superimposed loads. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2.1. Unit weights of construction materials. 
 
Material Unit Weight 

lb/ft3             kN/m3  
Reinforced concrete 
Plain concrete 
Structural steel 
Aluminum 
Brick 
Concrete masonry unit 
Wood (Douglas fir larch) 
Engineered wood (plywood) 
 

150                  23.60 
145                  22.60   
490                  77.00 
165                  25.90 
120                  18.90 
135                  21.20 
34                      5.30 
36                      5.7 
  

 



 
 Example 2.1 

 
The semi-gravity retaining wall shown in Figure 2.1  Figure 2.1 is made of mass concrete with a 
unit weight of  23.6 kN/mଷ. Determine the length of the wall’s weight per foot. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

120 360 300 

60  

Fig.  2.1.  Semi െ gravity retaining wall ሺall dimensions in cmሻ.

60 

730 

Soil 

Solution 
 
Area of wall ൌ ሺ7.8 mሻሺ0.6 mሻ ൅ ሺ7.3 mሻሺ0.6 mሻ ൅ ൫భ

మ
൯ሺ3 mሻሺ7.3 mሻ ൌ 20.01 mଶ 

 
Length of the wall’s weight per foot ൌ 20.01 mଶ ൈ ሺ23.6 kN/mଷሻ ൌ 472.24  kN/m 
 
 
2.1.2 Live Loads 
 
Live loads are moveable or temporarily attached to a structure. They include the loads on a building 
created by the storage of furniture and equipment, occupancy (people), and impact. Typical live 
load values are presented in Table 2.2. The loads were obtained from Table 4.3-1 in ASCE 7-16. 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The floor system of the classroom shown in Figure 2.2 consists of a 3-inch-thick reinforced 
concrete slab supported by steel beams. If the weight of each steel beam is 62 lb/ft, determine the 
dead load in lb/ft supported by any interior beam.   
 
 
 
 

Table 2.2. Minimum uniform and concentrated floor live loads. 
 
Occupancy or Use Live Load 

 

 
 Example 2.2 

Uniform psf (kN/m2) Concentrated lb (kN) 
Residential dwellings, apartments, hotels 
    Private rooms and corridors serving them 
    Public rooms and corridors serving them 
 

 
40 (1.92) 
100 (4.79) 

 

Hospitals 
   Patient rooms 
   Operating rooms, laboratories 
   Corridors above first floor 

 
40 (1.92) 
60 (2.87) 
80 (3.83) 

 
1,000 (4.45) 
1,000 (4.45) 
1,000 (4.45) 

Office buildings 
   Lobbies and first floor corridors 
   Offices 
   Corridors above first floor 

 
100 (4.79) 
50 (2.40) 
80 (3.83) 

 
2,000 (8.90) 
2,000 (8.90) 
2,000 (8.90) 

Recreational uses 
   Bowling alleys, poolrooms, and similar 
uses 
   Dance halls and ballrooms, gymnasiums 
   Stadiums and arenas with fixed seats 

 
75 (3.59) 
100 (4.79) 
60 (2.87) 

 

Stores 
   Retail 
        First floor 
        Upper floors    
  Wholesale, all floors 

 
 
100 (4.79) 
75 (3.59) 
125 (6.00) 

 
 
1,000 (4.45) 
1,000 (4.45) 
1,000 (4.45) 

Storage warehouses 
    Light 
    Heavy 

 
125 (6.00) 
250 (11.97) 

 

Manufacturing 
     Light 
     Heavy 

 
125 (6.00) 
250 (11.97) 

 
2,000 (8.90) 
3,000 (13.40) 

Schools 
    Classrooms 
    Corridors above first floor 
    First floor corridors 

 
40 (1.92) 
80 (3.83) 
100 (4.79) 

 
1,000 (4.45) 
1,000 (4.45) 
1,000 (4.45) 

 



 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
Dead load due to slab weight ൌ ሺ12ftሻ൫ర౟౤

భమ

12ft 12 ft 12 ft

Fig.  2.2. Classroom floor system. 

4 in 

concrete slab 

Steel 
 beam 

Solution 

൯ሺ150 lb/ftଷሻ ൌ 600 lb/ft 
Dead load due to beam weight ൌ 62 lb/ft 
Live load due to occupancy or use (classroom) ൌ ሺ40 lb/ftଶሻሺ12 ftሻ ൌ 480 lb/ft 
Total uniform load on steel beam ൌ 1142 lb/ft ൌ 1.142 k/ft 
 
 

 
Impact loads are sudden or rapid loads applied on a structure over a relatively short period of time 
compared with other structural loads. They cause larger stresses in structural members than those 
produced by gradually applied loads of the same magnitude. Examples of impact loads are loads 
from moving vehicles, vibrating machinery, or dropped weights. In practice, impact loads are 
considered equal to imposed loads that are incremented by some percentage, called the impact 
factor. Some building load impact factors are presented in Table 2.3. The American Association 
of State Highway and Transportation Officials (AASHTO) specifies the following expression for 
the computation of the impact factor for a moving truck load for use in highway bridge design: 
 
 
 
 
 
 
where 
 
𝐼 ൌ impact factor. 
𝐿 ൌ length in feet (or meters) of the span-loaded segment to cause maximum stress in the  
       member under consideration. 

𝐼 ൌ ఱబ
ಽశభమఱ

2.1.3 Impact Loads 

 ஸ ଴.ଷ              U.S. customary units 

𝐼 ൌ భఱ.మ
ಽశయఴ.భ

൑ 0.3         SI units 



 
 
 
 
 
 
 
 
 
 
 
 
2.1.4 Environmental Loads 
 
2.1.4.1 Rain Loads 
 
Rain loads are loads due to the accumulated mass of water on a rooftop during a rainstorm or major 
precipitation. This process, which is referred to as ponding, mostly occurs in flat roofs and roofs 
with pitches of less than 0.25 in/feet. Ponding in roofs occurs when the run off after precipitation 
is less than the amount of water retained on the roof. Water accumulated on a flat or low-pitch roof 
during a rainstorm can create a major structural load. Therefore, it must be considered when 
designing a building. The International Code Council requires that roofs with parapets include 
primary and secondary drains. The primary drain collects water from the roof and directs it to the 
sewer, while the secondary drain serves as a backup in the event that the primary drain is clogged. 
Figure 2.3 depicts a roof and these drainage systems. Section 8.3 of ASCE7-16 specifies the 
following equation for the computation of rain loads on an undeflected roof in the event that the 
primary drain is blocked:  
 
                           𝑅 ൌ 5.2 ሺ𝑑௦ ൅ 𝑑௛ሻ         U.S. customary unit 
                           𝑅 ൌ 0.0098 ሺ𝑑௦ ൅ 𝑑௛ሻ   SI units   
 
where 
  
 𝑅 ൌ rain load on the undeflected roof, in psi or KN/m2. 
 𝑑௦ ൌ depth of water on the undeflected roof up to the inlet of the secondary drainage system  
         (i.e. the static head), in inches or mm.                                                                                                              
 𝑑௛ ൌ additional depth of water on the undeflected roof above the inlet of the secondary  
           drainage system (i.e. the hydraulic head), in inches or mm. It depends on the flow 
           rate, the size of the drainage, and the area drained by each drain.   
 
 The flow rate, Q, in gallons per minute, can be computed as follows: 
 
                  Q (gpm) ൌ 0.0104 𝐴𝑖  
 
where   
 

Table 2.3. Building live load impact factors, as specified in 
ASCE/SEI 7-16.        
            
Loading Case 𝐼ሺ%ሻ 
Elevator supports and machinery 
Light machinery supports 
Reciprocating machine supports 
Hangers supporting floors and balconies 
Crane support girders and their connections 

100 
20 
50 
33 
25 

 



𝐴 ൌ roof area in square feet drained by the drainage system. 
𝑖 ൌ 100-yr., 1-hr. rainfall intensity in inches per hour for the building location specified in the         
       plumbing code.                                                                                                                                                    
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Fig.  2.3.  Roof drainage system ሺAdapted from the International Code Councilሻ. 

2.1.4.2 Wind Loads 
 
Wind loads are pressures exacted on structures by wind flow. Wind forces have been the cause of 
many structural failures in history, especially in coastal regions. The speed and direction of wind 
flow varies continuously, making it difficult to predict the exact pressure applied by wind on 
existing structures. This explains the reason for the considerable research efforts on the effect and 
estimation of wind forces. Figure 2.4 shows a typical wind load distribution on a structure. Based 
on Bernoulli’s principle, the relationship between dynamic wind pressure and wind velocity can 
be expressed as follows when visualizing the flow of wind as that of a fluid: 
 
 
                                                                                                                                                   (2.1) 
 
where 
 
 𝑞 ൌ dynamic wind pressure air in pounds per square foot. 
 𝜌 ൌ mass density of air.     
 𝑉 ൌ wind velocity in miles per hour. 
 
Basic wind speed for specific locations in the continental United States can be obtained from the 
basic speed contour map in ASCE 7-16. 
 

𝑞 ൌ ଵ
ଶ
𝜌𝑉ଶ 

     



Assuming that the unit weight of air for a standard atmosphere is 0.07651 lb/ft3 and substituting 
this value into the previously stated equation 2.1, the following equation can be used for static 
wind pressure: 
 
                                                                                                                                              (2.2) 
 
 
To determine the magnitude of wind velocity and its pressure at various elevations above ground 
level, the ASCE 7-16 modified equation 2.2 by introducing some factors to account for the height 
of the structure above ground level, the importance of the structure in regard to human life and 
property, and the topography of its location, as follows:  
 
 
 
                                                                                                                                                (2.3) 
 
                
where 
 
𝐾௭ ൌ the velocity pressure coefficient that depends on the height of the structure and the exposure  
         condition. The values of Kz are listed in Table 2.4. 
𝐾௭௧ ൌ a topographic factor that accounts for an increase in wind velocity due to sudden changes  
          in topography where there are hills and escarpments. This factor is an equal unity for  
         building on level ground and increases with elevation.  
𝐾ௗ ൌ wind directionality factor. It accounts for the reduced probability of maximum wind coming  
         from any given direction and for the reduced probability of the maximum pressure  
         developing on any wind direction most unfavorable to the structure. For structures subjected  
         to wind loads only, 𝐾ௗ ൌ 1; for structures subjected to other loads, in addition to a wind load,  
         𝐾ௗ values are tabulated in Table 2.5. 
𝐾௘ ൌ ground elevation factor. According to section 26.9 in ASCE 7-16, it is expressed as 𝐾௘ ൌ  
        1 for all elevations. 
𝑉 ൌ velocity of wind measured at a height 𝑧 above ground level. 
 
The three exposure conditions categorized as B, C, and D in Table 2.4 are defined in terms of 
surface roughness, as follows: 
 
Exposure B: The surface roughness for this category includes urban and suburban areas, wooden 
areas, or other terrain with closely spaced obstructions. This category applies to buildings with 
mean roof heights of ൑ 30 ft (9.1 m) if the surface extends in the upwind direction for a distance 
greater than 1,500 ft. For buildings with mean roof heights greater than 30 ft (9.1 m), this category 
will apply if the surface roughness in the upwind direction is greater than 2,600 ft (792 m) or 20 
times the height of the building, whichever is greater.  
 
Exposure C: Exposure C applies where surface roughness C prevails. Surface roughness C 
includes open terrain with scattered obstructions having heights less than 30 ft. 
 

 𝑞௭ ൌ  0.00256𝐾௭𝐾௭௧𝐾ௗ𝐾௘𝑉ଶ     Customary units (lb/ft2) 

 𝑞௭ ൌ  0.613𝐾௭𝐾௭௧𝐾ௗ𝐾௘𝑉ଶ          SI units (N/m2) 

𝑞 ൌ  ቀ଴.଴଻଺ହ
ଷଶ.ଶ

ቁ ቀହଶ଼଴
ଷ଺଴଴

ቁ
ଶ ௏

ଶ

ଶ
ൌ 0.00256𝑉ଶ 



Exposure D: The surface roughness for this category includes flats, smooth mud flats, salt flats, 
unbroken ice, unobstructed areas, and water surfaces. Exposure D applies where surface roughness 
D extends in the upwind direction for a distance greater than 5,000 ft or 20 times the building 
height, whichever is greater. This also applies if the surface roughness upwind is B or C, and the 
site is within 600 ft (183 m) or 20 times the building height, whichever is greater.            
  
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
               
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To obtain the final external pressures for the design of structures, equation 2.3 is further 
modified, as follows:  

Table 2.5. Wind directional factor, 𝐾ௗ, as specified in ASCE 7-16.       
             
Structure Type 𝐾ௗ 
Main wind force resisting system (MWFRS) 
Components and cladding 

0.85 
0.85 

Arched roofs 0.85 
Chimneys, tanks, and similar structures 
    Square 
    Hexagonal 
    Round 

 
0.9 
0.95 
0.95 

Solid freestanding walls and solid freestanding 
and attached signs 

0.85 

Open signs and lattice framework 0.85 
Trussed towers 
    Triangular, square, rectangular 
    All other cross sections 

 
0.85 
0.95 

 

Table 2.4. Velocity pressure exposure coefficient, 𝐾௭, as specified in 
ASCE 7-16.      
             
Height 𝑧 above  
ground level 
ft (m)                           

𝐾௓
Exposure 
B C D 

0-15 (0-4.6) 
20 (6.1) 
25 (7.6) 
30 (9.1) 
40 (12.2) 
50 (15.2) 
60 (18.0) 
70 (21.3) 
80 (24.4) 
90 (27.4) 

0.57 (0.70) * 
0.62 (0.70) 
0.66 (0.70) 
0.70 
0.76 
0.81 
0.85 
0.89 
0.93 
0.96 

0.85 
0.90 
0.94 
0.98 
1.04 
1.09 
1.13 
1.17 
1.21 
1.24 

1.03 
1.08 
1.12 
1.16 
1.22 
1.27 
1.31 
1.34 
1.38 
1.48 



                                                                                                                                                    (2.4) 
 
 
where 
 
𝑃௭ ൌ design wind pressure on a face of the structure at height 𝑧 above ground level. It increases  
         with the height on the windward wall, but it is constant with the height on the leeward and  
         side walls.  
𝐺 ൌ gust effect factor. 𝐺 ൌ 0.85 for rigid structures with a natural frequency of ൒ 1 Hz. The gust  
         factors for flexible structures are calculated using the equations in ASCE 7-16. 
𝐶௣ ൌ external pressure coefficient. It is a fraction of the external pressure on the windward walls,  
         leeward walls, side walls, and roof. The values of 𝐶௣ are presented in Tables 2.6 and 2.7. 
 
To compute the wind load that will be used for member design, combine the external and internal 
wind pressures, as follows: 
 
                                                                                                                                                    (2.5) 
 
                                 
 where 
 
𝐺𝐶௣௜ ൌ the internal pressure coefficient from ASCE 7-16.  
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Fig.  2.4. Typical wind distribution on a structureᇱs walls and roof. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2.7. Roof pressure coefficients, 𝐶௣, for use with 𝑞௛, as specified in ASCE 7-16. 
                  
Wind 
direction 

Windward 
angle, 𝜃 

Leeward 
angle, 𝜃 

ℎ/𝐿 10° 15° 20° 10° 15° ൒20°
Normal 
to ridge 

൑ 
0.25 
0.5 
൐ 1.0 
 

-0.7 
-0.9 
-1.3 

-0.5 
-0.7 
-1.0 

-0.3 
-0.4 
-0.7 

-0.3 
-0.5 
-0.7 

-0.5 
-0.5 
-0.6 

-0.6 
-0.6 
-0.6 

 
Table 2.6. Wall pressure coefficient, 𝐶௣, as specified in ASCE 7-16.       
                  
Surface 𝐿/𝐵 𝐶௣ Use with 
Windward 
wall 

All values 0.8 𝑞௭ 

Leeward 
wall 

0 – 1 
2 

൒ 4 

-0.5 
-0.3 
-0.2 

𝑞௛ 

Side walls All values -0.7 𝑞௛ 
 
Notes:  

1. Positive and negative signs are indicative of the wind pressures 
acting toward and away from the surfaces. 

2. L is the dimension of the building normal to the wind direction, 
and B is the dimension parallel to the wind direction. 



 
 
 
Example 2.3 

The two-story building shown in Figure 2.5 is an elementary school located on a flat terrain in a 
suburban area, with a wind speed of 102 mph and exposure category B. What is the wind velocity 
pressure at roof height for the main wind force resisting system (MWFRS)?    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

32ᇱ  

32ᇱ  

32ᇱ  

𝐵 ൌ 96ᇱ  

𝐿 ൌ 40ᇱ  

Moment Resisting  
Frames @ 32ᇱ c/c  

10ᇱ 

10ᇱ 

Wind Direction  
  

Fig.  2.5. Two െ story building.  

Solution 
 
The mean height of the roof is ℎ ൌ 20 ft. 
Table 26.10-1 from ASCE 7-16 states that if the exposure category is B and the velocity pressure 
exposure coefficient for ℎ ൌ 20ᇱ, then 𝐾௭ ൌ 0.7. 
The topography factor from section 26.8.2 of ASCE 7-16 is 𝐾௭௧ ൌ 1.0. 
The wind directionality factor for MWFRS, according to Table 26.6-1 in ASCE 7-16, is 𝐾ௗ ൌ
0.85. 
 
Using equation 2.3, the velocity pressure at a roof height of 20ᇱ for the MWFRS is as follows: 
   

 𝑞௭ ൌ  0.00256𝐾௭𝐾௭௧𝐾ௗ𝑉ଶ      
                   ൌ  0.00256ሺ0.7ሻሺ1.0ሻሺ0.85ሻሺ102ሻଶ  ൌ  15.84 lb/ ftଶ    

 
2.1.4.3 Snow Loads 
 
In some geographic regions, the force exerted by accumulated snow and ice on buildings’ roofs 
can be quite enormous, and it can lead to structural failure if not considered in structural design. 

  



Suggested design values of snow loads are provided in codes and design specifications. The basis 
for the computation of snow loads is what is referred to as the ground snow load. The ground snow 
load is defined by the International Building Code (IBC) as the weight of snow on the ground 
surface. The ground snow loads for various parts of the United States can be obtained from the 
contour maps in ASCE 7-16. Some typical values of the ground snow loads from this standard are 
presented in Table 2.8. Once these loads for the required geographic areas have been established, 
they must be modified for specific conditions to obtain the snow load for structural design. 
 
According to ASCE 7-16, the design snow loads for flat roofs and sloped roofs can be obtained 
using the following equations:   
  
 
                                                                                                                                                 (2.6)                          
               
 
 
where 
 
𝑝௙ ൌ design flat roof snow load. 
𝑝௦ ൌ design snow load for a sloped roof. 
𝑝௚ ൌ ground snow load. 
𝐼 ൌ importance factor. See Table 2.9 for importance factor values, depending on the category  
        of the building. 
𝐶௘ ൌ exposure factor. See Table 2.10 for exposure factor values, depending on the terrain 
           category. 
𝐶௧ ൌ thermal factor. See Table 2.11 for typical values.        
𝐶௦ ൌ slope factor. Values of Cs are provided in section 7.4.1 through 7.4.4 of ASCE 7-16,  
          depending on various factors. 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑝௙ ൌ 0.7𝐶௘𝐶௧𝐼𝑝௚

𝑝௦ ൌ 𝐶௦𝑝௙ 

Table 2.8. Typical ground snow loads, as specified in ASCE 7-16. 
                 
Location Load (PSF) 
Lancaster, PA 
Yakutat, AK 
New York City, NY 
San Francisco, CA 
Chicago, IL 
Tallahassee, FL 

30 
150 
30 
5 
25 
0 

 
Table 2.9. Importance factor for snow load, 𝐼௦, as specified in ASCE 7-16.  
 
Risk Category of Structure Importance Factor 
𝐼 
𝐼𝐼 
𝐼𝐼𝐼 
𝐼𝑉 

0.8 
1.0 
1.1 
1.2 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A single-story heated residential building located in the suburban area of Lancaster, PA is 
considered partially exposed. The roof of the building slopes at 1 on 20, and it is without 
overhanging eaves. What is the design snow load on the roof? 
 

 
According to Figure 7.2-1 in ASCE 7-16, the ground snow load for Lancaster, PA is 
𝑝௚ ൌ 30 psf. 
Since 30 psf ൐ 20 psf, the rain-on-snow surcharge is not required. 
 
To find the roof slope, use 𝜃 ൌ arctan൫ భ

మబ

 
 Example 2.4 

Solution 

൯ ൌ 2.86°.   

Table 2.10. Exposure coefficient, 𝐶௘, as specified in ASCE 7-16. 
 
Terrain Category Exposure of Roof 

Fully 
Exposed 

Partially 
Exposed 

Sheltered 

A: Large city center 
B: Urban and suburban areas 
C: Open terrain with scattered obstructions 
D: Unobstructed areas with wind over open 
water 
Above the tree line in windswept mountainous 
areas 
Alaska in areas with trees not within two miles 
of the site 

N/A 
0.9 
0.9 
0.8 
0.7 
 
0.7 

1.1 
1.0 
1.0 
0.9 
0.8 
 
0.8 

1.3 
1.2 
1.1 
1.0 
N/A 
 
N/A 

Table 2.11. Thermal factor, 𝐶௧, as specified in ASCE 7-16. 
 
Thermal Condition Thermal 

Factor 
All structures except as indicated below 1.0 
Structures kept just above freezing and others with cold, ventilated roofs in 
which the thermal resistance (R-value) between the ventilated space and the 
heated space exceeds 25 °F ൈ h ൈ ft2/Btu (4.4 K ൈ m2/W) 

1.1 

Unheated and open air structures 1.2 
Structures intentionally kept below freezing 1.3 
Continuously heated greenhouses with a roof having a thermal resistance (R-
value) less than 2.0 °F ൈ h ൈ ftଶ/Btu  

0.85 



 
According to ASCE 7-16, since 2.86° ൏ 15°, the roof is considered a low-slope roof. Table 7.3-2 
in ASCE 7-16 states that the thermal factor for a heated structure is 𝐶௧ ൌ 1.0 (see Table 2.11). 
 
According to Table 7.3-1 in ASCE 7-16, the exposure factor for terrain category B, partially 
exposed is 𝐶௘ ൌ 1.0 (see Table 2.10). 
Table 1.5-2 in ASCE 7-16 states that the importance factor 𝐼௦ ൌ  1.0 for risk category II (see 
Table 2.9). 
 
According to equation 2.6, the flat roof snow load is as follows: 
                 
                                              𝑝௙ ൌ  0.7𝐶௘𝐶௧𝐼𝑝௚ 

                                                    ൌ  ሺ0.7ሻሺ1ሻሺ1ሻሺ1ሻሺ30 psfሻ  ൌ  21 psf 

Since 21 psf ൐ 20𝐼௦  ൌ  ሺ20 psfሻሺ1ሻ  ൌ  20 psf.  Therefore, the design flat roof snow load is 
21 psf. 
 
 

The ground motion caused by seismic forces in many geographic regions of the world can be quite 
significant and often damages structures. This is particularly notable in regions near active 
geological faults. Thus, most building codes and standards require that structures be designed for 
seismic forces in such areas where earthquakes are likely to occur. The ASCE 7-16 standard 
provides numerous analytical methods for estimating the seismic forces when designing structures. 
One of these methods of analysis, which will be described in this section, is referred to as the 
equivalent lateral force (ELF) procedure. The lateral base shear V and the lateral seismic force at 
any level computed by the ELF are shown in Figure 2.6. According to the procedure, the total 
static lateral base shear, 𝑉, in a specific direction for a building is given by the following 
expression: 
 
 
                                                                                                                                                  (2.7) 
 
                        
where 
 
𝑉 ൌ lateral base shear for the building. The estimated value of 𝑉 must satisfy the following  
         condition: 
 
                                                                                                                                                 (2.8) 
 
                               
𝑊 ൌ effective seismic weight of the building. It includes total dead load of the building and its       
          permanent equipment and partitions. 

𝑉௠௜௡  ൌ  0.044𝑆஽ௌ𝐼𝑊 ൏ 𝑉 ൑ 𝑉௠௔௫ ൌ ௌವೄௐ
ோ/ூ

2.1.4.4 Seismic Loads 
 

 

𝑉 ൌ ௌವభ

்ሺோ/ூሻ
𝑊 



𝑇 ൌ fundamental natural period of a building, which depends on the mass and the stiffness of the     
        structure. It is computed using the following empirical formula: 
 
 
                                                                                                                                                 (2.9) 
 
𝐶௧ ൌ building period coefficient. The value of 𝐶௧ ൌ 0.028 for structural steel moment resisting  
         frames, 0.016 for reinforced concrete rigid frames, and 0.02 for most other structures (see  
         Table 2.12). 
ℎ௡ ൌ height of the highest level of the building, and 𝑥 ൌ 0.8 for steel rigid moment frames, 0.9     
         for reinforced concrete rigid frames, and 0.75 for other systems. 
 
 
 
 
 
 
 
 
 𝑆஽ூ ൌ design spectral acceleration. It is estimated by using a seismic map that provides an  
            earthquake’s intensity of design for structures at locations with 𝑇 ൌ 1 second.      
 𝑆஽௦  ൌ design spectral acceleration. It is estimated by using a seismic map that provides an  
             earthquake’s intensity of design for structures with 𝑇 ൌ 0.2 second.  
 𝑅 ൌ response modification coefficient. It accounts for the ability of a structural system to resist  
         seismic forces. The values of 𝑅 for several common systems are presented in Table 2.13.  
 𝐼 ൌ importance factor. This is a measure of the consequences to human life and damage to  
         property in the event that the structure fails. The value of the importance factor is 1 for office  
         buildings, but equals 1.5 for hospitals, police stations, and other public buildings where loss  
         of more life or damages to property are anticipated should a structure fail. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑇 ൌ 𝐶௧ℎ௡
௫

Table 2.13. Response modification coefficient, 𝑅, as specified in ASCE 7-16. 
 

Seismic Force-Resisting System 𝑅 
Bearing wall systems 
    Ordinary reinforced concrete shear walls 
    Ordinary reinforced masonry shear walls 
    Light-frame (cold-formed steel) walls sheathed with structural panels rated  
    for shear resistance or steel sheets 

 
4 
2 
6భ

మ
 

Building frame systems 
    Ordinary reinforced concrete shear walls 
    Ordinary reinforced masonry shear walls 
    Steel buckling-restrained braced frames  

 
5 
2 
8 

Moment-resisting frame systems 
     Steel special moment frames 
     Steel ordinary moment frames 
     Ordinary reinforced concrete moment frames    

 
8 
3భ

మ
 

3 
 

Table 2.12. 𝐶௧ values for various structural systems. 
 

Structural System                                          𝐶௧                               𝑥 
Steel moment resisting frames                 0.028                           0.8 
Eccentrically braced frames (EBF)            0.03                           0.75 
All other structural systems                        0.02                           0.75 

 



Once the total seismic static lateral base shear force in a given direction for a structure has been 
computed, the next step is to determine the lateral seismic force that will be applied to each floor 
level using the following equation: 
 
 
                                                                                                                                               (2.10) 
 
where  
 
𝐹௫ = lateral seismic force applied to level 𝑥.  
𝑤௜ and 𝑤௫  ൌ effective seismic weights at levels 𝑖 and 𝑥. 
ℎ௜ and ℎ௫  ൌ heights from the base of the structure to floors at levels 𝑖 and 𝑥. 
∑ 𝑊௜ℎ௜

௞  ൌ summation of the product 𝑊௜ and ℎ௜
௞ over the entire structure. 

𝑘 ൌ distribution exponent related to the fundamental natural period of the structure. For 𝑇 ൑ 
0.5s, 𝑘 ൌ 1.0, and for 𝑇 ൒  2.5s, 𝑘 ൌ 2.0. For 𝑇 lying between 0.5s and 2.5s, 𝑘 can be 
computed using the following relationship: 
 
                                                                                                                                              (2.11) 
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Fig.  2.6. Equivalent lateral force procedure 

 

The five-story office steel building shown in Figure 2.7 is laterally braced with steel special 
moment resisting frames, and it measures 75 ft by 100 ft in the plan. The building is located in 
New York City. Using the ASCE 7-16 equivalent lateral force procedure, determine the lateral 

𝑘 ൌ 1 ൅ ்ି଴.ହ
ଶ

 Example 2.5 
 

 

 

𝐹௫ ൌ ௐೣ ௛ೣ
ೖ

∑ ௐ೔௛೔
ೖ𝑉 



force that will be applied to the fourth floor of the structure. The roof dead load is 32 psf, the floor 
dead load (including the partition load) is 80 psf, and the flat roof snow load is 40 psf. Ignore the 
weight of cladding. The design spectral acceleration parameters are 𝑆஽ௌ ൌ  0.28, and 𝑆஽ଵ ൌ  0.11. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ሺ𝑎ሻ Elevation 
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Level 1 
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10.5 ft 

Fig.  2.7. Five െ story office building. 
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Solution 

𝑆஽ௌ ൌ  0.28 and 𝑆஽ଵ ൌ  0.11 (given).  

𝑅 ൌ 8 for special moment resisting steel frame (see Table 2.13).  

An office building is in occupancy risk category II, so 𝐼௘ ൌ  1.0 (see Table 2.9). 

Calculate the approximate fundamental natural period of the building 𝑇௔. 

𝐶௧ ൌ  0.028 and 𝑥 ൌ  0.8 (from Table 2.12 for steel moment resisting frames). 

ℎ௡ ൌ  Roof height ൌ  52.5 ft  

 𝑇 ൌ  𝑇௔ ൌ 𝐶௧ሺℎ௡
௫ሻ  ൌ  0.028ሺ52.5଴.଼ሻ  ൌ  0.67 sec ൏ 𝑇௅ ൌ 6𝑠  (Figure 22-14 in ASCE 7-16). 

Determine the dead load at each level. Since the flat roof snow load given for the office building 
is greater than 30 psf, 20% of the snow load must be included in the seismic dead load 
computations. 



The weight assigned to the roof level is as follows: 

𝑊୰୭୭୤ ൌ  ሺ32 psfሻሺ75 ftሻሺ100 ftሻ  ൅  ሺ20%ሻሺ40psfሻሺ75 ftሻሺ100 ftሻ  ൌ  300,000 lb 

The weight assigned to all other levels is as follows: 

𝑊௜ ൌ  ሺ80 psfሻሺ75ftሻሺ100 ftሻ  ൌ  600,000 lb 

The total dead load is as follows: 

𝑊்௢௧௔௟ ൌ 300,000 lb ൅ ሺ4ሻሺ600,000 lbሻ ൌ 2700 k 

Calculate the seismic response coefficient   𝐶௦. 

 𝐶௦ ൌ ೄವೄ
ೃ/಺೐

ൌ బ.మఴ
ఴ/భ.బ

ൌ 0.035 

 ൑ ೄವభ

ቀ
೅ೃ
಺೐

ቁ 
 ୀ బ.భభ

ሾሺబ.లళሻሺఴሻ/భ.బሿ ୀ ଴.଴ଶଵ 

Therefore, 𝐶௦ ൌ 0.021 ൐ 0.01                

Determine the seismic base shear 𝑉. 

𝑉 ൌ 𝐶௦𝑊 ൌ ሺ0.021ሻሺ2700 kipsሻ ൌ 56.7k 

Calculate the lateral force applied to the fourth floor. 

 𝑘 ൌ 1 ൅ ೅షబ.ఱ
మ

ୀଵାబ.లళషబ.ఱ
మ ൌ 1.085      

 𝐹ସ ൌ ೈర೓ర
ೖ

∑ ೈ೔೓೔
ೖ೘

೔సభ
ሺ𝑉ሻ 

ൌ లబబሺరమሻభ.బఴఱ

లబబሺభబ.ఱሻభ.బఴఱశలబబሺమభሻభ.బఴఱశలబబሺయభ.ఱሻభ.బఴఱశలబబሺరమሻభ.బఴఱశయబబሺఱమ.ఱሻభ.బఴఱሺ56.7 kሻ                                  

                                         ൌ 18.51 k 

 

 
Retaining structures must be designed against overturning and sliding caused by hydrostatic and 
earth pressures to ensure the stability of their bases and walls. Examples of retaining walls include 
gravity walls, cantilever walls, counterfort walls, tanks, bulkheads, sheet piles, and others. 
The pressures developed by the retained material are always normal to the surfaces of the retaining 
structure in contact with them, and they vary linearly with height. The intensity of normal pressure, 
𝑝, and the resultant force, 𝑃, on the retaining structure is computed as follows: 
 
 

2.1.4.5 Hydrostatic and Earth Pressures 



                                                                                                                                               (2.12) 
 
    
Where 
 
𝛾 ൌ unit weight of the retained material. 
ℎ ൌ distance from the surface of the retained material and the point under consideration. 
 

 
There are numerous other loads that may also be considered when designing structures, depending 
on specific cases. Their inclusion in the load combinations will be based on a designer’s discretion 
if they are perceived to have a future significant impact on structural integrity. These loads include 
thermal forces, centrifugal forces, forces due to differential settlements, ice loads, flooding loads, 
blasting loads, and more. 
 

Structures are designed to satisfy both strength and serviceability requirements. The strength 
requirement ensures the safety of life and property, while the serviceability requirement guarantees 
the comfortability of occupancy (people) and the aesthetics of the structure. To meet the afore-
stated requirements, structures are designed for the critical or the largest load that would act on 
them. The critical load for a given structure is found by combining all the various possible loads 
that a structure may carry during its lifetime. Sections 2.3.1 and 2.4.1 of ASCE 7-16 provide the 
following load combinations for use when designing structures by the Load and Resistance Factor 
Design (LRFD) and the Allowable Strength Design (ASD) methods. 
 
For LRFD, the load combinations are as follows: 
 
 
 
 
 
 
    
For ASD, the load combinations are as follows: 
 
 
 
 
 
 
 
where  
 
 𝐷 ൌ dead load. 

𝑝 ൌ  𝛾ℎ

𝑃 ൌ ଵ
ଶ

2.1.4.6 Miscellaneous Loads 

2.2 Load Combinations for Structural Design 
 

𝛾ℎଶ 

1. 𝐷 
2. 𝐷 ൅  𝐿  
3. 𝐷 ൅  ሺ𝐿௥ 𝑜𝑟 𝑆 𝑜𝑟 𝑅ሻ  
4. 𝐷 ൅  0.75𝐿 ൅  0.75ሺ𝐿௥ 𝑜𝑟 𝑆 𝑜𝑟 𝑅ሻ 
5. 𝐷 ൅  ሺ0.6𝑊ሻ 
 

1.  1.4𝐷 
2.  1.2 𝐷 ൅  1.6𝐿 ൅  0.5ሺ𝐿௥𝑜𝑟𝑆 𝑜𝑟 𝑅ሻ  
3.  1.2𝐷 ൅  1.6ሺ𝐿௥ 𝑜𝑟 𝑆 𝑜𝑟 𝑅ሻ  ൅  ሺ𝐿 𝑜𝑟 0.5𝑊ሻ   
4.  1.2𝐷 ൅  1.0𝑊 ൅  𝐿 ൅  0.5ሺ𝐿௥ 𝑜𝑟 𝑆 𝑜𝑟 𝑅ሻ 
5. 0.9𝐷 ൅  1.0𝑊 

 



 𝐿 ൌ live load due to occupancy. 
 𝐿௥ ൌ  roof live load. 
 𝑆 ൌ snow load. 
 𝑅 ൌ nominal load due to initial rainwater or ice, exclusive of the ponding contributions. 
 𝑊 ൌ wind load. 
 𝐸 ൌ earthquake load. 

A floor system consisting of wooden joists spaced 6 ft apart on the center and a tongue and groove 
wood boarding, as shown in Figure 2.8, supports a dead load (including the weight of the beam 
and boarding) of 20 psf and a live load of 30 psf. Determine the maximum factored load in lb/ft 
that each floor joist must support using the LRFD load combinations. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Dead load 𝐷 ൌ  ሺ6ሻሺ20ሻ  ൌ  120 lb/ft 
Live load   𝐿 ൌ  ሺ6ሻሺ30ሻ  ൌ  180 lb/ft 
 
Determining the maximum factored loads 𝑊௨ using the LRFD load combinations and neglecting 
the terms that have no values, yields the following: 
 

𝑊௨ ൌ ሺ1.4ሻሺ120ሻ ൌ 168 lb/ft 
 

𝑊௨ ൌ ሺ1.2ሻሺ120ሻ ൅ ሺ1.6ሻሺ180ሻ ൌ 288 lb/ft 
 

𝑊௨ ൌ ሺ1.2ሻሺ120ሻ ൅ ሺ0.5ሻሺ180ሻ ൌ 234 lb/ft 
 

𝑊௨ ൌ ሺ1.2ሻሺ120ሻ ൅ ሺ0.5ሻሺ180ሻ ൌ 234 lb/ft 

 
 Example 2.6 
 

6 ft 6 ft 6 ft 

Interior Joist 

Floor Boarding 

Fig. 2.8. Floor system. 

Solution 



 
𝑊௨ ൌ ሺ1.2ሻሺ120ሻ ൅ ሺ0.5ሻሺ180ሻ ൌ 234 lb/ft 

 
𝑊௨ ൌ ሺ0.9ሻሺ120ሻ ൌ 108 lb/ft 

 
The governing factored load ൌ  288 lb/ft  
 

Influence areas are areas of loading that influence the magnitude of loads carried by a particular 
structural member. Unlike tributary areas, where the load within an area is sustained by the 
member, all the loads in the influence area are not supported by the member under consideration.   
 

 
 

 

A tributary area is the area of loading that will be sustained by a structural member. For example, 
consider the exterior beam B1 and the interior beam B2 of the one-way slab system shown in      
Figure 2.9. The tributary width for B1 is the distance from the centerline of the beam to half the 
distance to the next or adjacent beam, and the tributary area for the beam is the area bordered by 
the tributary width and the length of the beam, as shaded in the figure. For the interior beam B2-
B3, the tributary width 𝑊் is half the distance to the adjacent beams on both sides.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2.3 Tributary Width and Area 
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Fig.  2.9.  Tributary area. 

ሺaሻ Plan 

ሺbሻ Section A െ A 

 

2.4 Influence Areas 



2.5 Live Load Reduction 

 
Most codes and standards allow for reduction in live loads when designing large floor systems, 
since it is very unlikely that such systems will always support the estimated maximum live loads 
at every instance. Section 4.7.3 of ASCE 7-16 permits a reduction of live loads for members that 
have an influence area of 𝐴ூ ൒ 37.2 mଶሺ400 ftଶሻ. The influence area is the product of the tributary 
area and the live load element factor. The ASCE 7-16 equations for determining the reduced live 
load based on the influence area are as follows: 
 
 
 
                                                                                                                                               (2.13) 
 
        
where 
 
𝐿 ൌ reduced design live load per ft2 (or m2). 
    ൒ 0.50 𝐿௢ for structural members supporting one floor (e.g. beams, girders, slabs, etc.). 
    ൒ 0.40 𝐿௢ for structural members supporting two or more floors (e.g. columns, etc.). 
No reduction is permitted for floor live loads greater than 4.79 kN/mଶሺ100 lb/ftଶሻ or for floors 
of public assembly, such as stadiums, auditoriums, movie theaters, etc., as there is a greater 
possibility of such floors being overloaded or used as car garages.  
𝐿௢ ൌ unreduced design live load per ft2 (or m2) from Table 2.2 (Table 4.3-1 in ASCE 7-16). 
𝐴் ൌ tributary area of member in ft2 (or m2). 
𝐾௅௅ ൌ 𝐴ூ/𝐴் ൌ live load element factor from Table 2.14 (see values tabulated in Table 4.7-1 in 
ASCE 7-16). 
𝐴ூ ൌ 𝐾௅௅𝐴் ൌ influence area. 
 
 
 
 
 
 

 

 

 

 Example 2.7 

A four-story school building used for classrooms has its columns spaced as shown in Figure 2.10. 
The flat roof loading of the structure is estimated to be 25 lb/ftଶ. Determine the reduced live load 
supported by an interior column at the ground level. 

𝐿 ൌ 𝐿଴ ቀ0.25 ൅ భఱ

ඥ಼ಽಽಲ೅
ቁ  (FPS units) 

𝐿 ൌ 𝐿଴ ቀ0.25 ൅ ర.ఱళ

ඥ಼ಽಽಲ೅
ቁ    (SI units) 

Table 2.14. Live load element factor. 
 
Building Element 𝐾௅௅ 
Interior columns and exterior columns without cantilever slabs 4 
Exterior columns with cantilever slabs 3 
Corner columns with cantilever slabs 2 
Interior beams and edge beams without cantilever slabs 2 
All other members, including panels in two-way slabs 1 
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Fig.  2.10. A four െ story schol building. 
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Solution 
 
Any interior column at the ground level supports the roof load and the live loads on the second, 
third, and fourth floors. 
 
The tributary area of an interior column is 𝐴் ൌ  ሺ30 ftሻሺ30 ftሻ  ൌ  900 ftଶ 

The roof live load is 𝐹ோ ൌ  ሺ25lb/ftଶሻሺ900 ftଶሻ  ൌ  22,500 lb ൌ  22.5 k 

For the floor live loads, use the ASCE 7-16 equations to check for the possibility of a reduction.  

𝐿௢ ൌ 40 lb/ftଶ (from Table 4.1 in ASCE 7-16). 

If the interior column 𝐾௅௅ ൌ  4, then the influence area 𝐴ଵ ൌ 𝐾௅௅𝐴் ൌ  ሺ4ሻሺ900 ftଶሻ  ൌ
 3600 ftଶ. 

Since 3600ftଶ ൐ 400ftଶ, the live load can be reduced using equation 2.14, as follows: 

                                𝐿 ൌ  𝐿 ቀ0.25 ൅ భఱ భఱ
଴ ಼ ಲ

ቁ  ൌ  40 ቀ0.25 ൅
యలబబ

ቁ  ൌ  20 lb/ftଶ
ඥ ಽಽ ೅ √

 

According to Table 4.1 in ASCE 7-16, the reduced load as a fraction of the unreduced floor live 

load for a classroom is ൫మబ
రబ

൯  ൌ  0.50 ൐  0.4. Thus, the reduced floor live load is as follows: 

𝐹ி ൌ ሺ20 lb/ftଶሻሺ900ftଶሻ ൌ 18,000lb ൌ 18 k 

The total load supported by the interior column at the ground level is as follows: 

 



                                               𝐹்௢௧௔௟ ൌ 22.5 k ൅ 3ሺ18 kሻ ൌ 76.5 k        

 

 Chapter Summary 

 
Structural loads and loading systems: Structural elements are designed for the worst possible 
load combinations. Some of the loads that could act on a structure are briefly defined below. 

Dead loads: These are loads of a constant magnitude in a structure. They include the weight of 
structure and the loads that are permanently attached to the structure. 

Live loads: These are loads of varying magnitudes and positions. They include moveable loads 
and loads due to occupancy. 

Impact loads: Impact loads are sudden or rapid loads applied on a structure over a relatively short 
period of time compared with other structural loads. 

Rain loads: These are loads due to accumulation of water on a roof top after a rainstorm. 

Wind loads: These are loads due to wind pressure exerted on structures. 

Snow loads: These are loads exerted on a structure by accumulated snow on a rooftop. 

Earthquake loads: These are loads exerted on a structure by the ground motion caused by seismic 
forces. 

Hydrostatic and earth pressures: These are loads on retaining structures due to pressures 
developed by the retained materials. They vary linearly with the height of the walls. 

Load combinations: The two building design methods are the Load and Resistance Factor Design 
method (LRFD) and the Allowable Strength Design method (ASD). Some of the load 
combinations for these methods are shown below. 

LRFD: 

1. 1.4𝐷 

2.  1.2 𝐷 ൅  1.6𝐿 ൅  0.5ሺ𝐿௥𝑜𝑟𝑆 𝑜𝑟 𝑅ሻ  

3.  1.2𝐷 ൅  1.6ሺ𝐿௥ 𝑜𝑟 𝑆 𝑜𝑟 𝑅ሻ  ൅ ሺ𝐿 𝑜𝑟 0.5𝑊ሻ   

4.  1.2𝐷 ൅  1.0𝑊 ൅  𝐿 ൅  0.5ሺ𝐿௥ 𝑜𝑟 𝑆 𝑜𝑟 𝑅ሻ 

5. 0.9𝐷 ൅  1.0𝑊 



 

ASD: 

1. 𝐷 

2. 𝐷 ൅  𝐿  

3. 𝐷 ൅ ሺ𝐿௥ 𝑜𝑟 𝑆 𝑜𝑟 𝑅ሻ  

4. 𝐷 ൅  0.75𝐿 ൅  0.75ሺ𝐿௥ 𝑜𝑟 𝑆 𝑜𝑟 𝑅ሻ 

5. 𝐷 ൅  ሺ0.6𝑊ሻ 

 

ACI (2016), Building Code Requirements for Structural Concrete (ACI 318-14), American 
Concrete Institute.   

ASCE (2016), Minimum Design Loads for Buildings and Other Structures, ASCE 7-16, ASCE. 

ICC (2012), International Building Code, International Code Council. 

 

2.1 Determine the maximum factored moment for a roof beam subjected to the following service 
load moments: 

 𝑀஽ ൌ 40 𝑝𝑠𝑓 (dead load moment) 

 𝑀௅ೝ
ൌ 36 𝑝𝑠𝑓 (roof live load moment) 

  𝑀௦ ൌ 16 𝑝𝑠𝑓 ሺsnow load moment) 

 

2.2 Determine the maximum factored load sustained by a column subjected to the following 
service loads: 

 𝑃஽ ൌ 500 𝑘𝑖𝑝𝑠 (dead load) 

 𝑃௅ ൌ 280 𝑘𝑖𝑝𝑠 (floor live load) 

𝑃ௌ ൌ 200 𝑘𝑖𝑝𝑠 (snow load) 

 References 

 Practice Problems 



 𝑃ா ൌ േ30 𝑘𝑖𝑝𝑠 (earthquake load) 

 𝑃௪ ൌ േ70 𝑘𝑖𝑝𝑠 (wind load) 

 

2.3 The typical layout of a steel-reinforced concrete composite floor system of a library building 
is shown in Figure P2.1. Determine the dead load in lb/ft acting on a typical interior beam 𝐵1-𝐵2 
in the second floor. All beams are 𝑊12 ൈ 44, spaced at 10 ft o.c. The distributed loads on the 
second floor are as follows: 

2 in. thick sand-cement screed                                                                = 0.25 psf 
6 in. thick reinforced concrete slab                                                         = 50 psf 
Suspended metal lath and gypsum plaster ceiling                                    = 10 psf 
Electrical and mechanical services                                                           = 4 psf 
 

 

2.4 The second-floor layout of an elementary school building is shown in Figure  P2.1. The floor 
finishing is similar to that of practice problem 2.3, with the exception that the ceiling is an 
acoustical fiberboard of a minimum design load of 1 psf. All beams are 𝑊12 ൈ 75, with a weight 
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Fig.  P2.1. A steel െ reinforced concrete composite floor system. 



of 75 lb/ft, and all girders are 𝑊16 ൈ 44, with a self-weight of 44 lb/ft. Determine the dead load 
on a typical interior girder 𝐴2-𝐵2. 

 

2.5 The second-floor layout of an office facility is shown in Figure P2.1. The floor finishing is 
similar to that of practice problem 2.3. Determine the total dead load applied to the interior column 
𝐵2 at the second floor. All beams are 𝑊14 ൈ 75, and all girders are 𝑊18 ൈ 44. 

 

2.6 A four-story flat roof hospital building shown in Figure P2.2 has concentrically braced frames 
as its lateral force resisting system. The weight at each floor level is indicated in the figure. 
Determine the seismic base shear in kips given the following design data: 

𝑆ଵ ൌ  1.5g 
𝑆௦ ൌ  0.6g 
Site class ൌ  D 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
2.7 Use ASCE 7-16 to determine the snow load (psf) for the building shown in Figure P2.3.  
The following data apply to the building: 
 
Ground snow load = 30 psf 
Roof is fully exposed with asphalt shingles. 
Roof’s slope angle ൌ  25° 
Open terrain 
Occupancy Category I 
Unheated structure 
 
 

ሺ𝑎ሻ Elevation 

Roof 

12ᇱ-0ᇱ 

Fig.  P2.2. A four െ story flat roof building. 

12ᇱ-0ᇱ 

12ᇱ-0ᇱ 

10ᇱ-0ᇱ 
W ୰୭୭୤     ൌ 600kips 

Wସ౪౞ ୤୪୭୭୰ ൌ 800kips 

Wଷ౨ౚ ୤୪୭୭୰ ൌ 800kips 

Wଶ౤ౚ ୤୪୭୭୰ ൌ 800kips 



 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2.8. In addition to the design snow load computed in practice problem 2.7, the roof of the building 
in Figure P2.3 is subjected to a dead load of 16 psf (including the weight of a truss, roof board, 
and asphalt shingle) on the horizontal plane. Determine the uniform load acting on the interior 
truss, if the trusses are 6ft-0in on center.   
 
2.9 Wind blows at a speed of 90 mph on the enclosed storage facility shown in Figure P2.4. The 
facility is situated on a flat terrain with an exposure category B. Determine the wind velocity 
pressure in psf at the eave height of the facility. The topographic factor is 𝐾௭௧ ൌ  1.0. 
 
 
 
 
 
 

 

Wood shingles 

roof boards 

Fig.  P2.3. A sample roof. 

 

wind

12°
15ᇱ‐0ᇱᇱ 

Fig.  P2.4. An enclosed storgae facility. 
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ANALYSIS OF STATICALLY 
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Chapter 3 

Equilibrium Structures, Support Reactions, Determinacy and 
Stability of Beams and Frames 
 
3.1 Equilibrium of Structures 
 
Engineering structures must remain in equilibrium both externally and internally when subjected 
to a system of forces. The equilibrium requirements for structures in two and three dimensions are 
stated below. 
 
3.1.1 Equilibrium in Two Dimensions 
 
For a structure subjected to a system of forces and couples which are lying in the 𝑥𝑦 plane to 
remain at rest, it must satisfy the following three equilibrium conditions: 
 
 
                                                                                                                                                  (3.1) 
 
     
The above three conditions are commonly referred to as the equations of equilibrium for planar 
structures. ∑ 𝐹௫ and ∑ 𝐹௬ are the summation of the 𝑥 and 𝑦 components of all the forces acting on 
the structure, and ∑ 𝑀௭ is the summation of the couple moments and the moments of all the forces 
about an axis 𝑧, perpendicular to the plane 𝑥𝑦 of the action of the forces. 
 
3.1.2 Equilibrium in Three Dimensions 
 
A structure in three dimensions, that is, in a space, must satisfy the following six requirements to 
remain in equilibrium when acted upon by external forces:  
 
 
 
                                                                                                                                                                (3.2) 
 
 

 
3.2 Types of Supports and Their Characteristics 
 
The type of support provided for a structure is important in ensuring its stability. Supports connect 
the member to the ground or to some other parts of the structure. It is assumed that the student is 
already familiar with several types of supports for rigid bodies, as this was introduced in the statics 

        ∑ 𝐹௫ ൌ  0; ∑ 𝐹௬ ൌ 0; ∑ 𝑀௭ ൌ 0 

∑ 𝐹௫ ൌ  0; ∑ 𝐹௬ ൌ 0; ∑ 𝐹௭ ൌ 0

∑ 𝑀௫ ൌ  0; ∑ 𝑀௬ ൌ 0; ∑ 𝑀𝑧 ൌ 0 
 



course. However, the characteristics of some of the supports are described below and shown in 
Table 3.1. 
 
3.2.1 Pin or Hinge Support 
 
A pin support allows rotation about any axis but prevents movement in the horizontal and vertical 
directions. Its idealized representation and reactions are shown in Table 3.1. 
 
3.2.2 Roller Support 
 
A roller support allows rotation about any axis and translation (horizontal movement) in any 
direction parallel to the surface on which it rests. It restrains the structure from movement in a 
vertical direction. The idealized representation of a roller and its reaction are also shown in Table 
3.1. 
 
3.2.3 Rocker Support 
 
The characteristics of a rocker support are like those of the roller support. Its idealized form is 
depicted in Table 3.1. 
 
3.2.4 Link 
 
A link has two hinges, one at each end. It permits movement in all direction, except in a direction 
parallel to its longitudinal axis, which passes through the two hinges. In other words, the reaction 
force of a link is in the direction of the link, along its longitudinal axis. 
 
3.2.5 Fixed Support 
 
A fixed support offers a constraint against rotation in any direction, and it prevents movement in 
both horizontal and vertical directions. 
 
3.3 Determinacy and Stability of Beams and Frames 
 
Prior to the choice of an analytical method, it is important to establish the determinacy and stability 
of a structure. A determinate structure is one whose unknown external reaction or internal members 
can be determined using only the conditions of equilibrium. An indeterminate structure is one 
whose unknown forces cannot be determined by the conditions of static equilibrium alone and will 
require, in addition, a consideration of the compatibility conditions of different parts of the 
structure for its complete analysis. Furthermore, structures must be stable to be able to serve their 
desirable functions. A structure is considered stable if it maintains its geometrical shape when 
subjected to external forces.  
 
3.3.1 Formulations for Stability and Determinacy of Beams and Frames 
 
The conditions of determinacy, indeterminacy, and instability of beams and frames can be stated 
as follows: 



 
 
 
                                                                                                                                                    (3.3) 
 
where 
 
𝑟 ൌ number of support reactions. 
𝐶 ൌ equations of condition (two equations for one internal roller and one equation for each 
internal pin). 
𝑚 ൌ number of members. 
𝑗 ൌ number of joints. 
 
Table 3.1. Types of supports. 
 
Idealization of Support Reaction Characteristics 

 
 
 
 
 
Pin or hinge 
 

 Prevents movement in the 
vertical and horizontal direction 
but allows rotation. 

 
 
 
 
 
Roller 

 Prevents movement in the 
vertical direction but allows 
rotation and translation in the 
horizontal direction.  

 
 
 
 
 
 
Rocker 

 The characteristics of a rocker 
support are similar to that of a 
roller. 

 
 
 
 
Link 

 Prevents movement in the 
direction perpendicular to the 
axis of the link. 

 
 
 
 
Fixed 

 Does not allow translation in 
any direction and rotation.  

𝐹௬ 

𝐹௬ 

𝐹

𝐹௫

𝐹௬ 

𝐹௫ 

𝐹௬ 
𝑀 

3𝑚 ൅ 𝑟 ൏  3𝑗 ൅ 𝐶     Structure is statically unstable 

3𝑚 ൅ 𝑟 ൌ  3𝑗 ൅ 𝐶     Structure is statically determinate 

3𝑚 ൅ 𝑟 ൐  3𝑗 ൅ 𝐶     Structure is statically indeterminate 



 
3.3.2 Alternative Formulation for Determinacy and Stability of Beams and Frames  
                                                                        
  
 
                                                                                                                                                    (3.4) 
            
 
 
where 
 
𝑟 ൌ number of support reactions. 
𝐹௜ ൌ number of reaction forces transmitted by an internal hinge or internal roller. 
𝑚 ൌ number of members. 
 
 
 Example 3.1 
 
Classify the beams shown in Figure 3.1 through Figure 3.5 as stable, determinate, or 
indeterminate, and state the degree of indeterminacy where necessary. 

 
 
 
 
 
 
 
 

Fig. 3.1. Beam. 𝐹𝐵𝐷

 
Solution 
 
First, draw the free-body diagram of each beam. To determine the classification, apply equation 
3.3 or equation 3.4. 
  
Using equation 3.3, 𝑟 ൌ  7, 𝑚 ൌ  2, 𝑐 ൌ  0, 𝑗 ൌ  3. Applying the equation leads to 3ሺ2ሻ ൅
7 ൐  3ሺ3ሻ ൅ 0, or 13 ൐  9. Therefore, the beam is statically indeterminate to the 4°. 
 
Using equation 3.4, 𝑟 ൌ  7, 𝑚 ൌ  1,  𝐹௜ ൌ  0. Applying the equation  leads to 7 ൅ 0 ൐
ሺ3ሻሺ1ሻ, or 7 ൐  3. Therefore, the beam is statically indeterminate to the 4°. 
 
Note: When using equation 3.3, the portions on either side of the interior support are counted as 
separate members.     
     
 
 

𝑟 ൅ 𝐹௜ ൏ 3𝑚     Structure is statically unstable 

𝑟 ൅ 𝐹௜ ൌ 3𝑚     Structure is statically determinate 

𝑟 ൅ 𝐹௜ ൐ 3𝑚     Structure is statically indeterminate 



 
 
 
 
 

Fig. 3.2. Beam. 𝐹𝐵𝐷

 
Solution 
 
Using equation 3.3, 𝑟 ൌ  6, 𝑚 ൌ  3, 𝑐 ൌ  0, 𝑗 ൌ  4.  Applying the equation leads to 3ሺ3ሻ ൅
6 ൐  3ሺ4ሻ ൅ 0, or 15 ൐  12. Therefore, the beam is statically indeterminate to the 3°. 
 
Using equation 3.4, 𝑟 ൌ  6, 𝑚 ൌ  1, 𝐹௜ ൌ  0. Applying the equation leads to 6 ൅ 0 ൐  ሺ3ሻሺ1ሻ,
or 6 ൐  3. Therefore, the beam is statically indeterminate to the 3°.  
 
 
 
 
 
 
 
 
 

Fig. 3.3. Beam. 
𝐹𝐵𝐷

 
Solution 
 
Using equation 3.3, 𝑟 ൌ  5, 𝑚 ൌ  3, 𝑐 ൌ  1, 𝑗 ൌ  4. Applying the equation leads to 3ሺ3ሻ ൅
5 ൐  3ሺ4ሻ ൅ 1, or 14 ൐  13. Therefore, the beam is statically indeterminate to the 1°. 
 
Using equation 3.4, 𝑟 ൌ  5, 𝑚 ൌ  2,  𝐹௜ ൌ  2. Applying the equation leads to 5 ൅ 2 ൐  3ሺ2ሻ,
or 7 ൐  6. Therefore, the beam is statically indeterminate to the 1°.  
 
 
 
 
 
 
 

Fig. 3.4. Beam. 
𝐹𝐵𝐷

 
Solution 
 
Using equation 3.3, 𝑟 ൌ  5, 𝑚 ൌ  4, 𝑐 ൌ  1, 𝑗 ൌ  5. Applying the equation leads to 3ሺ4ሻ ൅
5 ൐  3ሺ5ሻ ൅ 1, or 17 ൐  16. Therefore, the equation is statically indeterminate to the 1°. 
 



Using equation 3.4, 𝑟 ൌ  5, 𝑚 ൌ  2,  𝐹௜ ൌ  2. Applying the equation leads to 5 ൅ 2 ൐  3ሺ2ሻ,
or 7 ൐  6. Therefore, the beam is statically indeterminate to the 1°.  
 
 
 
 
 
 
 
 
 
 

𝐹𝐵𝐷 

Fig. 3.5. Beam. 

 
Solution 
 
Using equation 3.3, 𝑟 ൌ  5, 𝑚 ൌ  5, 𝑐 ൌ  2, 𝑗 ൌ  6. Applying the equation leads to 3ሺ5ሻ ൅
5 ൌ  3ሺ6ሻ ൅ 2, or 20 ൌ  20. Therefore, the beam is statically determinate. 
 
Using equation 3.4, 𝑟 ൌ  5, 𝑚 ൌ  3, 𝐹௜ ൌ  4. Applying the equation leads to 5 ൅ 4 ൐  3ሺ3ሻ,
or 9 ൌ  9. Therefore, the beam is statically determinate. 
 
 

Classify the frames shown in Figure 3.6 through Figure 3.8 as stable or unstable and determinate 
or indeterminate. If indeterminate, state the degree of indeterminacy. 
 
 

 

 
Using equation 3.3, 𝑟 ൌ  3, 𝑚 ൌ  3, 𝑐 ൌ  0, 𝑗 ൌ  4. Applying the equation leads to 3ሺ3ሻ ൅
3 ൌ  3ሺ4ሻ ൅ 0, or 12 ൌ  12. Therefore, the frame is statically determinate. 
 

 
 

Example 3.2 

 
 
 
 
 
 
 
 
 
 

Fig. 3.6. Frame. 𝐹𝐵𝐷 Disassembled Frame 

Solution 



Using equation 3.4, 𝑟 ൌ  3, 𝑚 ൌ  1, 𝐹௜ ൌ  0. Applying the equation leads to 3 ൅ 0 ൌ  ሺ3ሻሺ1ሻ,
or 3 ൌ  3. Therefore, the frame is statically determinate. 
 
Note: When using equation 3.3 for classifying a frame, the frame must be disassembled at its 
joints to correctly determine the number of members. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.7. Frame. 

 

 
Using equation 3.3, 𝑟 ൌ  6, 𝑚 ൌ  3, 𝑐 ൌ  1, 𝑗 ൌ  4. Applying the equation leads to 3ሺ3ሻ ൅
6 ൐  3ሺ4ሻ ൅ 1, or 15 ൐  13. Therefore, the frame is statically indeterminate to the 2°. 
 
Using equation 3.4, 𝑟 ൌ  6, 𝑚 ൌ  2, 𝐹௜ ൌ  2. Applying the equation leads to6 ൅ 2 ൐  3ሺ2ሻ,
or 8 ൐  6. Therefore, the frame is statically indeterminate to the 2°.  
 
 

Solution 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝐹𝐵𝐷Fig. 3.8. Frame. 

 

 
Using equation 3.3, 𝑟 ൌ  4, 𝑚 ൌ  9, 𝑐 ൌ  0, 𝑗 ൌ  8. Applying the equation leads to 3ሺ9ሻ ൅
4 ൐  3ሺ8ሻ ൅ 0, or 31 ൐  24. Therefore, the frame is statically indeterminate to the 7°. 

Solution 



 
Using equation 3.4, 𝑟 ൌ  4, 𝑚 ൌ  1, 𝐹௜ ൌ  9. Applying the equation leads to 4 ൅ 9 ൐  ሺ3ሻሺ2ሻ,
or 13 ൐  6. Therefore, the frame is statically indeterminate to the 7°.  
 
Note: When using equation 3.4 to classify a frame with a closed loop, as given here, the loop has 
to be cut open by the method of section, and the internal reactions in the cut section should be 
considered in the analysis.       
 
 

 
The support reactions for statically determinate and stable structures on a plane are determined by 
using the equations of equilibrium. The procedure for computation is outlined below. 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

3.4 Computation of Support Reactions for Planar Structures 

 

 
 Example 3.3 

A cantilever beam is subjected to a uniformly distributed load and an inclined concentrated load, 
as shown in figure 3.9a. Determine the reactions at support 𝐴.    
 
 
 
 
 
 
 

4 kN/m 

𝐴 
𝐵

2 m 

16 kN 

6 m 

75°

ሺ𝑎ሻ 

• Sketch a free-body diagram of the structure, identifying all 
the unknown reactions using an arrow diagram. 

• Check the stability and determinacy of the structure using 
equation 3.3 or 3.4. If the structure is classified as  
determinate, proceed with the analysis. 

• Determine the unknown reactions by applying the three 
equations of equilibrium. If a computed reaction results in a 
negative answer, the initially assumed direction of the 
unknown reaction, as indicated by the arrow head on the free-
body diagram, is wrong and should be corrected to show the 
opposite direction. Once the correction is made, the 
magnitude of the force should be indicated as a positive 
number in the corrected arrow head on the free-body diagram 

   

Procedure for Computation of Support Reactions 



 
 
Fig. 3.9. Beam 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ሺ𝑏ሻ 

4 kN/m 

𝐴 𝐵

16 kN 

75°

𝐴௬ 

𝐴௫ 

𝑀 

ሺ𝑐ሻ

𝐴 𝐵 

16 kN 

75°

𝐴௬ 

𝐴௫ 

𝑀 

ሺ4 kN/mሻ൫2 m൯  

 
 
Solution 
 
Free-body diagram. The free-body diagram of the entire beam is shown in Figure 3.9b. The support 
reactions, as indicated in the free-body diagram, are 𝐴௬, 𝐴௫, and 𝑀. 
 
Computation of reactions. Prior to the computation of the support reactions, the distributed loading 
should be replaced by a single resultant force, and the inclined loading resolved to the vertical and 
horizontal components. The magnitude of the resultant force is equal to the area under the 
rectangular loading, and it acts through the centroid of the rectangle. As seen in Figure 3.9c, 𝑃 ൌ
 ሾሺ4 kN/mሻሺ2 mሻሿ, and its location is at the centroid of the rectangle loading ൌ  ൣ൫భ

మ
൯ሺ2 mሻ൧.  

Applying the equations of static equilibrium provides the following: 
 

↶ ൅ ෍ 𝑀஺ ൌ  0 

െሺ16 sin 75°ሻሺ8ሻ െ ሺ4 ൈ 2ሻሺ1ሻ ൅ 𝑀஺ ൌ  0 
 
   𝑀஺ ൌ  131.64 kN. m                                           𝑀஺ ൌ  131.64 kN. m ↶     
 
 
↑ ൅ ∑ 𝐹௬ ൌ  0   



𝐴௬ െ 16 sin 75° െ ሺ4 ൈ 2ሻ ൌ  0  
 
 𝐴௬ ൌ  23.45 kN                                                    𝐴௬ ൌ  23.45 kN ↑   
 

 → ൅ ෍ F୶ ൌ  0 

   A୶ ൌ  0                                                                   A୶ ൌ  0    
 
 
 

 
A 12ft-long simple beam carries a uniformly distributed load of 2 kips/ft over its entire span and a 
concentrated load of 8 kips at its midspan, as shown in Figure 3.10a. Determine the reactions at 
the supports 𝐴 and 𝐵 of the beam. 
 

 
 
Example 3.4 

 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 

2 kips 

𝐴 𝐵 

2 kips/ft 

12 ft 

Fig.  3.10. Simple beam. 

ሺ𝑎ሻ 

2 kips 

A 𝐵

2 kips/ft 

A௬ 𝐵 ሺ𝑏ሻ A 𝐵 

A௬ 𝐵ሺ𝑐ሻ 

ሺ2 k/ftሻ൫24 ft൯  

2 kips 

 
Free-body diagram. The free-body diagram of the entire beam is shown in Figure 3.10b. 
 
Computation of reactions. The distributed loading is first replaced with a single resultant force, as 
seen in Figure 3.10c. The magnitude of the resultant force is equal to the area of the rectangular 
loading (distributed force). Thus, 𝑃 ൌ  ሾሺ2 k/ftሻሺ12 ftሻሿ, and its location is at the centroid of the 

 

Solution 



rectangular loading ൌ  ൣ൫భ
మ
൯ሺ12ftሻ൧. Since there is a symmetry in loading in this example, the 

reactions at both ends of the beam are equal, and they could be determined using the equations of 
static equilibrium and the principle of superposition, as follows: 
 
൅↑ ∑ 𝐹௬ ൌ  0   
𝐴௬ ൌ  𝐵௬ ൌ  ൫మൈభమ

మ
൯ ൅ మ

మ
ൌ  13 kips                            𝐴௬ ൌ 𝐵௬ ൌ  13 kips ↑ 

 

൅ → ෍ F୶ ൌ  0 

 A୶ ൌ  0                                                                    A୶ ൌ  0 

 
 

A beam with an overhang is subjected to a varying load, as shown in Figure 3.11a. Determine the 
reactions at supports 𝐴 and 𝐵. 
 

 

 Example 3.5 

 

 
 
 
 
 
 
 
 
 
 
 
 

10 kN/m 

 
 
 
 
 
 
 
 
 

10 kN/m 

A 
B 

A 
B 

3 m 3 m 

C

Fig.  3.11. Beam with an overhang. 

ሺ𝑎ሻ 

C

A௬ B 

ሺ𝑏ሻ 

P ൌ ቀଵ
ଶ
ቁ ൫10 kN/m൯൫6 m൯ 

A௬ B௬ 

A
B 

C 

ሺ𝑐ሻ 
 

 
Free-body diagram. The free-body diagram of the entire beam is shown in Figure 3.11b. 
 

 

Solution 



Computation of reactions. Observe that the distributed loading in the beam is triangular. The 
distributed load is first replaced with a single resultant force, as shown in Figure 3.11c. The 
magnitude of the single resultant force is equal to the area under the triangular loading. Thus, 𝑃 ൌ
 ൫భ

మ
൯ሺ6 mሻሺ10 kN/mሻ, and its centroid is at the center of the loading (6m). Applying the equations 

of equilibrium provides the following: 
 

↶ ൅ ෍ 𝑀஺ ൌ  0 

 

െ ቀଵ
ଶ
ቁ ሺ10ሻሺ6ሻሺ3ሻ ൅ 3B ൌ  0 

 𝐵௬ ൌ  30 kN                                                            𝐵௬ ൌ  30 kN ↑ 
 
↑ ൅ ∑ 𝐹௬ ൌ  0   
  
30 ൅ 𝐴௬ െ ൫భ

మ
൯ሺ6ሻሺ10ሻ  ൌ  0                                   𝐴௬ ൌ  0   

 
                                                  

 → ൅ ෍ F୶ ൌ  0 

 A୶ ൌ  0                                                                     A୶ ൌ  0   

 
 

 
A beam with overhanging ends supports three concentrated loads of 12 kips, 14 kips, and 16 kips 
and a moment of 100 kips.ft, as shown in Figure 3.12a. Determine the reactions at supports A and 
B. 
 

 
Free-body diagram. The free-body diagram of the beam is shown in Figure 3.12b. 
 

 

 Example 3.6 

 
 
 
 
 
 
 
 
 
 
 

4 ft 2 ft 2 ft 

16 kips 

𝐴 𝐵 

2 ft 

14 kips 

2 ft 

12 kips 
100 k . ft 

ሺ𝑎ሻ 

Fig.  3.12. Beam with overhanging ends. 

16 kips 

𝐴 𝐵 

14 kips 12 kips 
100 k . ft 

A௬ B

ሺ𝑏ሻ 

 

Solution 



Computation of reactions. Applying the equations of equilibrium provides the following: 
 

൅↶ ෍ 𝑀஺ ൌ  0 

 
െ100 ൅ 12ሺ2ሻ െ 14ሺ2ሻ െ 16ሺ8ሻ ൅ 4𝐵௬ ൌ 0 
 
𝐵௬ ൌ  58 kips                                                                 𝐵௬ ൌ  58 kips ↑ 
 
൅↑ ∑ 𝐹௬ ൌ  0   
     
58 ൅ A୷ െ 12 െ 14 െ 16 ൌ 0                                       𝐴௬ ൌ  16 kips ↑ 

 
                                                   

൅ → ෍ F୶ ൌ  0 

 A୶ ൌ  0                                                                          𝐴௫ ൌ  0   
 
 
 
 

 
 Example 3.7 

A compound beam is subjected to the loads shown in Figure 3.13a. Find the support reactions at 
𝐴  and 𝐵 of the beam. 
 
 
 
 
 
 
 
 
 
 
 

25 kN 

𝐵 

10 kN/m 

2 m 

𝐶 

7 m 2 m 

𝐴 

ሺ𝑎ሻ Fig. 3.13. Compound beam. 
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ሺ𝑏ሻ 

Schematic Diagram of Member-Interaction 

ሺ𝑐ሻ 



 

 
Free-body diagram. The free-body diagram of the entire beam is shown in Figure 3.13b. 
 
Identification of primary and complimentary structures. For correct analysis of a compound 
structure, the primary and the complimentary parts of the structure should be identified for proper 
understanding of their interaction. The interaction of these parts are shown in Figure 3.13c. The 
primary structure is the part of the compound structure that can sustain the applied external load 
without the assistance of the complimentary structure. On the other hand, the complimentary 
structure is the part of the compound structure that depends on the primary structure to support the 
applied external load. For the given structure, part AC is the primary structure, while part CB is 
the complimentary structure.  
 
Computation of reactions. The analysis of a compound structure must always begin with the 
analysis of the complimentary structure, as the complimentary structure is supported by the 
primary structure. Using the equations of equilibrium, the support reactions of the beam are 
determined as follows: 
 
Analysis of the complimentary structure CB. 

 

 

 

 

 

 

Computation of support reaction. The isolated free-body diagram of the complimentary structure 
is shown in Figure 3.13c. First, the distributed loading is replaced by a single resultant force (P), 
which is equal to the area of the rectangular loading, as shown in Figure 3.13d and Figure 3.13e. 
Applying the equations of equilibrium, and noting that due to symmetry in loading, the support 
reactions at point C and B are equal in magnitude, provides the following: 

 ൅↑ ∑ 𝐹௬ ൌ  0   

 
𝐵௬ ൌ  C௬ ൌ  భబሺళሻ

మ

Solution 

 ൌ  35 kN                                            𝐵௬  ൌ  C௬ ൌ  భబሺళሻ
మ

 ൌ  35 k ↑   
 
 
 

𝐶 𝐵

𝐵௬ 
ሺ𝑑ሻ 

C௬ 

10 kN/m 

C௬

P ൌ ൫10 kN/m൯ሺ7mሻ 

7𝑚 

ሺ𝑒ሻ
𝐵௬ 



Analysis of the primary structure AC. 

 

Computation of support reaction. Note that prior to the computation of the reactions, the reaction 
at point C in the complimentary structure is applied to the primary structure as a load. The 
magnitude of the applied load is the same as that of the complimentary structure, but it is opposite 
in direction. Applying the equations of equilibrium suggests the following:  

൅↶ ෍ 𝑀஺ ൌ  0 

 
െ25ሺ2ሻ െ 35ሺ4ሻ ൅ 𝑀஺ ൌ 0 
𝑀஺ ൌ  190 kN. m                                                          𝑀஺ ൌ  190 kN. m ↶    

 
 

 
 
൅↑ ∑ 𝐹௬ ൌ  0         
A୷ െ 25 െ 35 ൌ  0 
A୷ ൌ  60 kN                                                                   𝐴௬ ൌ  60 kN ↑  
     
 

൅ → ෍ F୶ ൌ  0 

 A୶ ൌ  0                                                                          𝐴௫ ൌ  0      
 

 
 

Find the reactions at supports 𝐴, 𝐶, and  𝐸 of the compound beam carrying a uniformly distributed 
load of 10 kips/ft over its entire length as shown in figure 3.14a. 
 
 
 

 

 

 

 

25 kN 

𝐶 
𝐴 

A௬ 

M 

C௬ ൌ 35 kN 

ሺ𝑓ሻ 

2 m 2 m 
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10 kips/ft 

10 ft 8 ft 4 ft 4 ft 

𝐴 
𝐵 𝐶 𝐷 

𝐸 

ሺ𝑎ሻ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.  3.14. Compound beam. 

10 kips/ft 

𝐶௬ 

10 kips/ft 

10 kips/ft 

A௬ 

𝐸௬ 

𝑀஺ 

B௬ 

B௬ 

D௬ 

D௬ 

ሺ𝑏ሻ

Schematic Diagram of Member-Interaction 

ሺ𝑐ሻ 

 
Solution 
 
Free-body diagram. The free-body diagram of the entire beam is shown in Figure 3.14b. 
 
Identification of primary and complimentary structures. The interaction diagram for the given 
structure is shown in Figure 3.14c. AB is the primary structure, while BD and DE are the 
complimentary structures.  
 
Computation of reactions.  
 
Analysis of complimentary structure DE. 

 

 

 

10 kips/ft 

𝐸௬ D௬ 

ሺ𝑐ሻ 

𝐸௬ D௬ 

ሺ𝑑ሻ

P ൌ ൫10 k/ft൯൫8 ft൯ 



 

 

Computation of support reaction. The isolated free-body diagram is shown in Figure 3.14c. First, 
the distributed loading is replaced by a single resultant force (P) equal the area of rectangular 
loading, as shown in Figure 3.14d. Applying the equations of equilibrium, and noting that due to 
symmetry in loading, the support reactions at point D and E are equal in magnitude, suggests the 
following: 

 
൅↑ ∑ 𝐹௬ ൌ  0   
 
𝐷௬ ൌ  𝐸௬  ൌ  భబሺఴሻ

మ
 ൌ  40 kips                                            𝐸௬ ൌ  40 kips ↑      

 
 
Analysis of complimentary structure BD. 

 

 

 

 

 

 

Computation of support reaction. The isolated free-body diagram is shown in Figure 3.14e. First, 
the distributed loading is replaced by a single resultant force (P) equal to the area of the 
rectangular loading, as shown in Figure 3.14f. The load from the complimentary structure is 
applied at point D. Applying the equations of equilibrium suggests the following: 
 
 ൅↶ ∑ 𝑀஻ ൌ  0 
 

െ10ሺ8ሻ ቀ଼
ଶ
ቁ െ 40ሺ8ሻ ൅ 4𝐶௬ ൌ 0 

𝐶௬ ൌ  160 kips                                                                𝐶௬ ൌ  160 kips ↑      
 
൅↑ ∑ 𝐹௬ ൌ  0         
160 െ 𝐵௬ െ 10ሺ8ሻ െ 40 ൌ 0 
 
𝐵௬ ൌ  40 kips     
 
 

𝐶௬ 

10 kips/ft 

B௬ 

D௬ ൌ 40 k 

ሺ𝑒ሻ 

𝐶௬ B௬ 

ሺ𝑓ሻ

P ൌ ൫10 k/ft൯൫8 ft൯ 
D௬ ൌ 40 k 



Analysis of primary structure AB. 

 

 

 

 

 

Computation of support reaction. Note that prior to the computation of the reactions, the uniform 
load is replaced by a single resultant force, and the reaction at point B in the complimentary 
structure is applied to the primary structure as a load. Applying the equilibrium requirement yields 
the following:                                                                                               

                                                                           
    ൅↶ ∑ 𝑀஺ ൌ  0 
 

M െ 10ሺ10ሻ ቀଵ଴
ଶ

ቁ ൅ 40ሺ10ሻ ൌ 0 

 
𝑀஺ ൌ  100 kips. ft                                                      𝑀஺ ൌ  100 kips. ft ↶     
 
൅↑ ∑ 𝐹௬ ൌ  0         
𝐴௬ െ 10ሺ10ሻ ൅ 40 ൌ 0 
𝐴୷ ൌ  60 kips                                                              𝐴௬ ൌ  60 kips ↑      
 

൅ → ෍ F୶ ൌ  0 

 𝐴௫ ൌ 0                                                                       𝐴௫ ൌ 0       
 
 

Find the reactions at supports A, B, E, and F of the loaded compound beam, as shown in  
Figure 3.15a. 
 
 
 
 
 
 
 
 
 

10 kips/ft 

A௬ 

𝑀஺ 

B௬ ൌ 40 k

ሺ𝑔ሻ 
A௬ 

𝑀஺

B௬ ൌ 40 k 

ሺℎሻ 

P ൌ ൫10 k/ft൯൫10 ft൯ 
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2 m 2 m 1.5 m 4 m 4 m 4 m 

10 kN/ m 
24 kN 

𝐴 
𝐵 𝐷

𝐹 
𝐶

20 kN . m 
𝐸

Fig.  3.15. Compound beam. 

ሺ𝑎ሻ

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

24 kN 

𝐵 
𝐶 𝐷 𝐹

𝐸
20 kN . m 

10 kN/ m 

D௬ 

D௬ 

C௬ 

C௬ 

𝐴 

𝐴௬ 𝐹௬ 𝐸௬ 𝐵௬ 

ሺ𝑏ሻ 

ሺ𝑐ሻ

Schematic Diagram of Member-Interaction 

 
 
Solution 
 
Free-body diagram. The free-body diagram of the entire beam is shown in Figure 3.15b. 
 
Identification of primary and complimentary structure. The interaction diagram for the given 
structure is shown in Figure 3.15c. CD is the complimentary structure, while AC and DF are the 
primary structures.  
 
Computation of reactions.  
 
Analysis of complimentary structure CD. 

 

 

 

 

 

Computation of support reaction. The isolated free-body diagram is shown in Figure 3.15c. First, 
the distributed loading is replaced by a single resultant force (P), which is equal to the area of the 

10 kN/ m 

D௬ C௬ 

ሺ𝑐ሻ 

D௬ C௬ 

ሺ𝑑ሻ

P ൌ ൫10 kN/m൯൫4 m൯ 



rectangular loading, as shown in Figure 3.15d. Applying the equations of equilibrium, and noting 
that due to symmetry in loading, the support reactions at point C and D are equal in magnitude, 
suggests the following: 

൅↑ ∑ 𝐹௬ ൌ  0   

C௬ ൌ  D௬ ൌ  ଵ଴ሺସሻ
ଶ

 ୀ ଶ଴ ୩୒ 

 
Analysis of primary structure AC. 

 

 

 

 

Computation of support reaction. Note that the reaction at C of the complimentary structure is 
applied as a downward force of the same magnitude at the same point on the primary structure.  
Applying the equation of equilibrium suggests the following:   

൅↶ ෍ 𝑀஺ ൌ  0 

     
െ24ሺ2ሻ െ 20ሺ5.5ሻ ൅ 4𝐵௬ ൌ  0 
𝐵௬ ൌ  39.5 kN                                                             𝐵௬ ൌ  39.5 kN ↑    
                                                                                               
൅↑ ∑ 𝐹௬ ൌ  0      
     
A௬ ൅ 39.5 െ 24 െ 20 ൌ  0 
𝐴௬ ൌ  4.5 kN                                                               𝐴௬ ൌ  4.5 kN ↑      
         

൅ → ෍ F୶ ൌ  0 

 𝐴௫ ൌ  0                                                                       𝐴௫ ൌ  0        
                                                                                        
 
Analysis of primary structure DF. 

 

 

 

 

24 kN 

𝐵 
𝐶

C௬ ൌ 20 kN 

𝐴 

𝐴௬ 𝐵௬ 

ሺ𝑒ሻ 

𝐷 𝐹 
𝐸 

20 kN . m 

D௬ 

𝐹௬ 𝐸௬ 

ሺ𝑓ሻ 



 

 

 

 

 

Computation of support reaction. The isolated free-body diagram is shown in Figure 3.15f. First, 
the distributed loading is replaced by a single resultant force (P) equal to the area of the triangular 
loading, as shown in Figure 3.15g. Applying the equations of equilibrium, and noting that the 
support reaction at point D of the complimentary structure is applied as a load on the primary 
structure, suggests the following:                                                                                      

     

൅↶ ෍ 𝑀ி ൌ  0 

െ20 ൅ ቀଵ
ଶ

ൈ 8 ൈ 10ቁ ቀଶ
ଷ

ൈ 8ቁ ൅ 20ሺ8ሻ െ 4𝐸௬ ൌ  0 

𝐸௬ ൌ  88.33 kN                                                          𝐸௬ ൌ  88.33kN ↑       
 
                                                                                          
൅↑ ∑ 𝐹௬ ൌ  0         

𝐹௬ ൅ 88.33 െ ቀଵ
ଶ

ൈ 8 ൈ 10ቁ െ 20 ൌ  0 

𝐹௬ ൌ  28.33 kN                                                           𝐹௬ ൌ  28.33 kN ↑       
 
                                                                                                         
 

Determine the reactions at supports A and D of the frame shown in Figure 3.16a. 
 
 
 
 
 
 
 
 
 
 
 
 
 

ሺ𝑓ሻ

ሺ𝑔ሻ 

𝐷 𝐹
𝐸 

20 kN . m 

D௬ 

𝐹௬ 𝐸௬ 

P ൌ ቀଵ
ଶ
ቁ ൫10 kN/m൯൫8 m൯ 

 
 

Example 3.10 

6 ft 

8 ft 

3 kips/ft 

𝐷 

𝐶𝐵 

2 kips/ft 

𝐴 

Fig.  3.16. Frame. ሺ𝑎ሻ



 
 
 
 
 
 
 
 
 
 
 
 
 
 

3 kips/ft 

𝐷 

𝐶 𝐵 

2 kips/ft 

𝐴 

A  

A௫ 

ሺ𝑏ሻ 

 
 

𝐷 

𝐶 𝐵

𝐴

A௬ 

A௫ 

D 

ሺ𝑐ሻ 

P ൌ ቀଵ
ଶ
ቁ ൫3 k/ft൯൫6 ft൯ 

P
ൌ

൫2
 k

/f
t൯

൫8
 ft

൯ 

4 ft 

3 ft 

௬ D 

Solution 
 
Free-body diagram. The free-body diagram of the entire beam is shown in Figure 3.16b. 
 
Computation of reactions. The distributed loads in column AB and beam BC are first replaced by 
single resultant forces determined as the area of their respective shade of loading, as shown in 
Figure 3.16c. Applying the conditions of equilibrium suggests the following:  
 

൅↶ ෍ 𝑀஺ ൌ  0 

 

𝐷௬ሺ6ሻ െ ቀଵ
ଶ
ቁ ሺ6ሻሺ3ሻሺ3ሻ െ ሺ2ሻሺ8ሻሺ4ሻ ൌ 0 

 
𝐷௬ ൌ  15.7 kips                                                      𝐷௬ ൌ  15.7 kips ↑      
 
൅↑ ∑ 𝐹௬ ൌ  0   
     
A௬ ൅ 15.17 െ 3ሺ6ሻ ൌ 0 
𝐴௬ ൌ  2.830 kips                                                   𝐴௬ ൌ  2.830 kips ↑      

 
                                                 

൅ → ෍ F୶ ൌ  0 

 
െA௫ ൅ ሺ2 ൈ 8ሻ ൌ  0  
 
𝐴௫ ൌ  16 kips                                                        𝐴௫ ൌ  16 kips ←         
 
 



 
 
 

Example 3.11 

A rigid frame is loaded as shown in Figure 3.17a. Determine the reactions at support D.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝐵 

10 kips 

𝐶 𝐴 

𝐷 

16 kips   

4 kips/ft 

D௫ 

D௬ 

M஽

ሺ𝑏ሻ 

 

𝐵

10 kips 

𝐶 𝐴

𝐷

10 ft 

16 kips 

14 ft 

8 ft 

8 ft 

 

4 kips/ft 

Fig.  3.17. Rigid frame. 

ሺ𝑎ሻ

𝐵 

10 kips 

𝐶𝐴

𝐷 

16 kips   

D௫ 

D௬ 

M஽ 

ሺ𝑐ሻ 

𝑃 ൌ ሺ4ሻሺ14ሻ 

7 ft 

 
 



Solution 
 
Free-body diagram. The free-body diagram of the entire beam is shown in Figure 3.17b. 
 
Computation of reactions. The distributed load in portion AB of the frame is first replaced with a 
single resultant force, as shown in Figure 3.17c. Applying the equations of equilibrium suggests 
the following:  
 
൅↶ ∑ 𝑀஽ ൌ  0    
   

െ𝑀஽ െ 16ሺ8ሻ ൅ ሺ4 ൈ 14ሻ ቀଵସ
ଶ

ቁ െ 10ሺ10ሻ ൌ  0 

𝑀஽ ൌ  164 kips. ft                                                    𝑀஽ ൌ  164 kips. ft ↷ A 
                                                                           
 
൅↑ ∑ 𝐹௬ ൌ  0   
   
𝐷௬ െ 4ሺ14ሻ െ 10 ൌ  0 
𝐷௬ ൌ  66 kips                                                          𝐷௬ ൌ 66 kips ↑ 
   
                                                
൅ → ∑ F୶ ൌ 0   
 
െ𝐷௫ ൅ 16 ൌ  0  
𝐷௫ ൌ  16 kips                                                          𝐷௫ ൌ 16 kips ← 
 
 
 

Find the reactions at supports E and F of the frame shown in Figure 3.18a.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 Example 3.12 
 

𝐹

𝐵 

𝐸 

𝐶
𝐴 

12 m 

4 m 4 m 

4 kN/m 

7 m 

𝐷

8 kN/m 8 kN/m 

ሺ𝑎ሻ Fig.  3.18. Frame.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝐹 

𝐵 

𝐸 

𝐶 
𝐴 

4 kN/m 

𝐷

8 kN/m 8 kN/m 

E௬ F 

ሺ𝑏ሻ 

𝐹 

𝐵 

𝐸 

𝐶 
𝐴 𝐷

E௬ F 

ሺ𝑐ሻ 

E௫

𝑃 ൌ ሺ4ሻሺ14ሻ 
𝑃 ൌ ቀଵ

ଶ
ቁ ሺ4ሻሺ8ሻ 𝑃 ൌ ቀଵ

ଶ
ቁ ሺ4ሻሺ8ሻ 

 
 
 

Free-body diagram. The free-body diagram of the frame is shown in Figure 3.18b. 
 
Computation of reactions. The distributed loads are first replaced with single resultant forces, as 
shown in Figure 3.18c. Applying the equations of static equilibrium suggests the following:  
 
൅↶ ∑ 𝑀ா ൌ  0    
 
  ൫భ

మ

Solution 
 

ൈ 4 ൈ 8൯൫భ
య

ൈ 4൯ െ ሺ4 ൈ 7ሻ൫ళ
మ
൯ െ ൫భ

మ
ൈ 4 ൈ 8൯൫ళ

మ
൅ భ

య
ൈ 4൯ ൅ 7𝐹௬ ൌ  0 

 
𝐹௬ ൌ  22 kN                                                              𝐹௬ ൌ  22 kN ↑     

 
                                                                        
൅↑ ∑ 𝐹௬ ൌ 0   

𝐸௬ ൅ 22 െ 2 ቀଵ
ଶ

ൈ 4 ൈ 8ቁ െ 4ሺ7ሻ ൌ  0 

𝐸௬ ൌ 38 kN                                                             𝐸௬ ൌ  38 kN ↑    
 
                                                
൅ → ∑ F୶ ൌ  0   
 
𝐸௫ ൌ  0                                                                     𝐸௫ ൌ  0      
 



 
 Example 3.13 
 
Determine the reactions at support A of the rigid frame shown in Figure 3.19a. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

20 kN 

10 kN/m 

10 m 

3 m 

𝐵

𝐴

3 m 

ሺ𝑎ሻ

Fig.  3.19. Rigid frame.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

20 kN 

10 kN/m 

𝐵 

𝐴 

𝐶

A௬ 

A௫ 
M஺ 

ሺ𝑏ሻ 

 

20 kN 

𝐵 

𝐴 

𝐶

A௬ 

A௫ 
M஺

ሺ𝑐ሻ 

𝑃
ൌ

ቀଵ ଶቁ
ሺ 1

0ሻ
ሺ 1

0ሻ
 

 
 
 
 
 



Solution 
 
Free-body diagram. The free-body diagram of the frame is shown in Figure 3.19b. 
 
Computation of reactions. The distributed load in column AB is first replaced with a single resultant 
force, as shown in Figure 3.19c. Applying the equations of static equilibrium suggests the 
following:  
 
൅↶ ∑ 𝑀஺ ൌ  0    
   

െ𝑀஺ െ 20ሺ3ሻ െ ቀଵ
ଶ

ൈ 10 ൈ 10ቁ ቀଵ
ଷ

ൈ 10ቁ ൌ  0 

 
𝑀஺ ൌ െ226.67 kN. m                             𝑀஺ ൌ  226.67 kN. m ↶     
  
൅↑ ∑ 𝐹௬ ൌ 0   
   
𝐴௬ െ 20 ൌ  0 
𝐴௬ ൌ  20 kN                                              𝐴௬ ൌ  20 kN ↑      
                                             
൅ → ∑ 𝐹௫ ൌ  0   
െ𝐴௫ ൅ ൫భ

మ
ൈ 10 ൈ 10൯ ൌ  0  

𝐴௫ ൌ  50 kN                                              𝐴௫ ൌ  50 kN ←      
 
 
 
 

Determine the reactions at supports A and E of the frame hinged at C, as shown in Figure 3.20a.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Example 3.14 
 

10 kips 

𝐷

8 ft 

10 ft 

𝐶

𝐵 

2 kip/ft 

𝐴 

4 ft 

𝐸 

Fig.  3.20. Frame. 
ሺ𝑎ሻ 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

10 kips 

𝐷 

𝐶௬ 

𝐵 

2 kip/ft 

𝐴 𝐸 

E௬ A௬ 

E௫
A௫ 

𝐶௬ 
𝐶௫ 

𝐶௫ 

10 kips 

𝐶௬ 

𝐵

𝐴 

A௬ 

A௫ 

𝐶௫ 

ሺ𝑐ሻ 

𝑃
ൌ

ሺ 2
ሻሺ

10
ሻ  

5 ft 

ሺ𝑏ሻ 

 
Free-body diagram. The free-body diagram of the frame is shown in Figure 3.20b. 
 
Computation of reactions. The reactions in a compound frame are computed considering the free-
body diagrams of both the entire frame and part of the frame. Prior to computation of the reactions, 
the distributed load in the column is replaced by a single resultant force. The vertical reactions at 
E and A and the horizontal reactions at A are found by applying the equations of static equilibrium 
and considering the free-body diagram of the entire frame. The horizontal reaction at E is found 
by considering part CDE of the free-body diagram. 
 
൅↶ ∑ 𝑀஺ ൌ  0    
   

8𝐸௬ െ ሺ2 ൈ 10ሻ ቀଵ଴
ଶ

Solution 

ቁ െ 10ሺ4ሻ ൌ  0 

𝐸௬ ൌ  17.5 kips                                              𝐸௬ ൌ 17.5 kips ↑      
 
൅↑ ∑ 𝐹௬ ൌ  0   
   
𝐴௬ ൅ 17.5 െ 10 ൌ  0 
𝐴௬ ൌ  െ7.5 kips                                            𝐴௬ ൌ 7.5 kips ↓      
 
The negative sign implies that the originally assumed direction of 𝐴௬ was not correct. Therefore,  
𝐴௬ acts downward instead of upward as was initially assumed. This should be corrected in the 
subsequent analysis. 
 
To determine 𝐸௫, consider the moment of forces in member CDE about the hinge. 
 

↶ ൅ ෍ Mେ ൌ  0 



17.5ሺ4ሻെ10E௫ ൌ  0 
E௫ ൌ  7 kips                                                  E௫ ൌ  7kips ←       
                                            
൅ → ∑ F୶ ൌ  0    
 െA௫ െ 7 ൅ 2 ൈ 10 ൌ  0  
A௫ ൌ  13 kips                                              A௫ ൌ  13 kips ←     
 
 
 
 

 
 Example 3.15 

Find the reactions at support A and B of the loaded frame in Figure 3.21a. The frame is hinged at 
D.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

15 kN

12 kN 

20 
𝐵 

𝐷 

𝐴 

𝐶 

A௫ 
M୅A௬ B 

ሺ𝑏ሻ 

12 kN 

20 kN/m 

 8 m 

3 m 

𝐵

𝐷 

𝐴

3 m 

𝐶 

15 kN 

4 m 

 4 m 

ሺ𝑎ሻFig.  3.21. Loaded frame.  

15 kN

12 kN

𝐵 

𝐷 

𝐴

𝐶

A௫

M୅A௬ B 
ሺ𝑐ሻ

𝑃

ቀଵ ቁ



Solution 
 
Free-body diagram. The free-body diagram of the frame is shown in Figure 3.21b. 
 
Computation of reactions. The distributed load in column AC is first replaced with a single 
resultant force by finding the area of loading, as shown in Figure 3.21Figurec. The reaction at B is 
computed by taking the moment of the forces in part DB of the frame about the pin at D, and other 
reactions are determined by applying other conditions of equilibrium. 
 
൅↶ ∑ 𝑀஽ ൌ  0    
   
𝐵௬ሺ0ሻ െ 15ሺ4ሻ ൌ  0 
𝐵௬ ൌ  0 

൅↶ ෍ 𝑀஺ ൌ  0 

 

𝑀஺ ൅ 6 ൈ 0 െ ቀଵ
ଶ

ൈ 8 ൈ 20ቁ ቀଵ
ଷ

ൈ 8ቁ െ 12ሺ3ሻ ൅ 15ሺ4ሻ ൌ  0 

 
𝑀஺ ൌ 189.33 kN. m                            𝑀஺ ൌ 189.33 kN. m ↷       
 
൅↑ ∑ 𝐹௬ ൌ 0   
   
𝐴௬ ൅ 0 െ 12 ൌ 0 
𝐴௬ ൌ െ12 kN                                        𝐴௬ ൌ 12 ↓       
 
The negative sign implies that the originally assumed direction of 𝐴௬ was not correct. Therefore, 
𝐴௬ acts downward instead of upward as was initially assumed. This should be corrected in the 
subsequent analysis. 
 
൅ → ∑ 𝐹௫ ൌ  0   
െ𝐴௫ െ 15 ൅ ൫భ

మ
ൈ 8 ൈ 20൯ ൌ  0  

𝐴௫ ൌ  65 kN                                      𝐴௫ ൌ  65 kN →      
 
 
 

 

Conditions of static equilibrium: A structure is in a state of static equilibrium if the resultant of 
all the forces and moments acting on it is equal to zero. Mathematically, this is expressed as 
follows: 

          ∑ 𝐹 ൌ  0         ∑ 𝑀 ൌ  0 

 Chapter Summary 



For a body in a plane, there are the following three equations of equilibrium: 

    ∑ 𝐹௫ ൌ  0     ∑ 𝐹௬ ൌ  0     ∑ 𝑀௢ ൌ  0 

Types of support: Various symbolic representations are used to model different types of supports 
for structures. A roller is used to model a support that prevents a vertical movement of a structure 
but allows a horizontal translation and rotation. A pin is used to model a support that prevents 
horizontal and vertical movements but allows rotation. A fixed support models a support that 
prevents horizontal and vertical movements and rotation. 

 

 

 

 

Determinacy, indeterminacy, and stability of structures: A structure is determinate if the 
number of unknown reactions is equal to the number of static equilibrium. Thus, the equations of 
static equilibrium are enough for the determination of the supports for such a structure. On the 
other hand, a statically indeterminate structure is a structure that has the number of the unknown 
reactions in excess of the equations of equilibrium. For the analysis of an indeterminate structure 
additional equations are needed, and these equations can be obtained by considering the 
compatibility of the structure. Indeterminate structures are sometimes necessary when there is a 
need to reduce the sizes of members or to increase the stiffness of members. A stable structure is 
one which has support reactions that are not parallel or concurrent to one another. The formulation 
of stability and determinacy of beams and frames are as follows:  

     Beams and frames:        3𝑚 ൅ 𝑟 ൏  3𝑗 ൅ 𝐶  Structure is unstable                                       

                                            3𝑚 ൅ 𝑟 ൌ  3𝑗 ൅ 𝐶  Structure is determinate 

                                            3𝑚 ൅ 𝑟 ൐  3𝑗 ൅ 𝐶  Structure is indeterminate 

 

3.1 Classify the structures shown in Figure P3.1a to Figure P3.1p as statically determinate or 
indeterminate, and statically stable or unstable. If indeterminate, state the degree of indeterminacy. 
 

𝑉 ൌ  0 
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𝑉 ൌ 0 
𝐻 ൌ 0
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𝑉 ൌ 0
𝐻 ൌ 0
𝜃 ൌ 0 

  Practice Problems 

 
 
 
 

ሺ𝑎ሻ 

Fig.  P3.1. Structure classification.
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3.2. Determine the support reactions for the beams shown in Figure P3.2 through Figure P3.12. 
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Fig.  P3.2. Beam. Fig. P3.3. Beam. 
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Fig.  P3.4. Beam. 
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Fig. P3.5. Beam. 
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Fig.  P3.6. Beam. 
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Fig.  P3.8. Beam. 
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Fig. P3.9. Beam. 
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Fig.  P3.10. Beam. 

 
 
 
 
 
 
 
 
 
 
 
3.3. Determine the support reactions for the frames shown in Figure P3.13 through Figure P3.20. 
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Fig.  P3.12. Beam. 
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Fig.  P3.13. Frame. 
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Fig. P3.14. Frame. 
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Fig.  P3.15. Frame. 

 
 
 

Fig. P3.16. Frame. 
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Fig.  3.17. Frame. Fig. 3.18. Frame. 
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3.4 Determine the support reactions for the trusses shown in Figure P3.21 through Figure P3.27. 
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 Fig.  P3.21. Truss. 
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Fig.  P3.23. Truss. 
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Fig.  P3.24. Truss.   

A 

B C D E

F

G

H 

20 ft 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

4 m 4 m 4 m 

3 m 

3 m 

3 m 

4 m 

40 kN 80 kN 

Fig.  P3.25. Truss.   
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Fig.  P3.26. Truss.   
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Chapter 4 

Internal Forces in Beams and Frames 
 
4.1 Introduction 
 
When a beam or frame is subjected to transverse loadings, the three possible internal forces that 
are developed are the normal or axial force, the shearing force, and the bending moment, as shown 
in section k of the cantilever of Figure 4.1. To predict the behavior of structures, the magnitudes 
of these forces must be known. In this chapter, the student will learn how to determine the 
magnitude of the shearing force and bending moment at any section of a beam or frame and how 
to present the computed values in a graphical form, which is referred to as the “shearing force” 
and the “bending moment diagrams.” Bending moment and shearing force diagrams aid 
immeasurably during design, as they show the maximum bending moments and shearing forces 
needed for sizing structural members.     
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Fig.  4.1.  Internal forces in a beam. 
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4.2 Basic Definitions 
 
4.2.1 Normal Force 
 
The normal force at any section of a structure is defined as the algebraic sum of the axial forces 
acting on either side of the section. 
 
4.2.2 Shearing Force 
 



The shearing force (SF) is defined as the algebraic sum of all the transverse forces acting on either 
side of the section of a beam or a frame. The phrase “on either side” is important, as it implies that 
at any particular instance the shearing force can be obtained by summing up the transverse forces 
on the left side of the section or on the right side of the section. 
 
4.2.3 Bending Moment 
 
The bending moment (BM) is defined as the algebraic sum of all the forces’ moments acting on 
either side of the section of a beam or a frame. 
 
4.2.4 Shearing Force Diagram 
 
This is a graphical representation of the variation of the shearing force on a portion or the entire 
length of a beam or frame. As a convention, the shearing force diagram can be drawn above or 
below the x-centroidal axis of the structure, but it must be indicated if it is a positive or negative 
shear force. 
 
4.2.5 Bending Moment DiagramThis is a graphical representation of the variation of the bending 
moment on a segment or the entire length of a beam or frame. As a convention, the positive bending 
moments are drawn above the x-centroidal axis of the structure, while the negative bending 
moments are drawn below the axis.  
 
4.3 Sign Convention 
 
4.3.1 Axial Force 
 
An axial force is regarded as positive if it tends to tier the member at the section under 
consideration. Such a force is regarded as tensile, while the member is said to be subjected to axial 
tension. On the other hand, an axial force is considered negative if it tends to crush the member at 
the section being considered. Such force is regarded as compressive, while the member is said to 
be in axial compression (see Figure 4.2a and Figure 4.2b).  
 
4.3.2 Shear Force 
 
A shear force that tends to move the left of the section upward or the right side of the section 
downward will be regarded as positive. Similarly, a shear force that has the tendency to move the 
left side of the section downward or the right side upward will be considered a negative shear force 
(see Figure 4.2c and Figure 4.2d). 
 
4.3.3 Bending Moment 
 
A bending moment is considered positive if it tends to cause concavity upward (sagging). If the 
bending moment tends to cause concavity downward (hogging), it will be considered a negative 
bending moment (see Figure 4.2e and Figure 4.2f). 
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𝑀 𝑀 
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𝑁 𝑁 
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𝐹

𝐹 

Fig.  4.2.  Sign conventions for axial force, shearing force, and bending moment. 

𝑀 𝑀

ሺ𝑓ሻNegative bending moment 

4.4 Relation Among Distributed Load, Shearing Force, and Bending Moment 
 
For the derivation of the relations among w, V, and M, consider a simply supported beam subjected 
to a uniformly distributed load throughout its length, as shown in Figure 4.3. Let the shear force 
and bending moment at a section located at a distance of 𝑥 from the left support be 𝑉 and 𝑀, 
respectively, and at a section 𝑥 ൅ 𝑑𝑥 be 𝑉 ൅ 𝑑𝑉 and 𝑀 ൅ 𝑑𝑀, respectively. The total load acting 
through the center of the infinitesimal length is 𝑤𝑑𝑥.  
 

 

 

 

 

 

 

To compute the bending moment at section 𝑥 ൅ 𝑑𝑥, use the following:  

                                𝑀௫ାௗ௫ ൌ  𝑀 ൅ 𝑉𝑑𝑥 െ 𝑤𝑑𝑥. 𝑑𝑥/2 

                                            ൌ  𝑀 ൅ 𝑉𝑑𝑥 (neglecting the small second order term 𝑤𝑑𝑥ଶ/2) 

                               𝑀 ൅ 𝑑𝑀 ൌ  𝑀 ൅ 𝑉𝑑𝑥 

 

or                                                                                                                                                 (4.1) 
ௗெ

ௗ௫
ൌ 𝑉ሺ𝑥ሻ      

𝑀 ൅ 𝑑𝑀 

𝑑𝑥 

𝑉
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𝑀

𝑤ሺ𝑥ሻ 

𝑑𝑥
𝐿 

𝑥 

𝑤ሺ𝑥ሻ 

Fig.  4.3. Simply supported beam. 



Equation 4.1 implies that the first derivative of the bending moment with respect to the distance is 
equal to the shearing force. The equation also suggests that the slope of the moment diagram at a 
particular point is equal to the shear force at that same point. Equation 4.1 suggests the following 
expression: 

 

                                                                                                                                                   (4.2) 

 

Equation 4.2 states that the change in moment equals the area under the shear diagram. Similarly, 
the shearing force at section 𝑥 ൅ 𝑑𝑥 is as follows: 

                              𝑉௫ାௗ௫ ൌ  𝑉 െ 𝑤𝑑𝑥 

                             𝑉 ൅ 𝑑𝑉 ൌ  𝑉 െ 𝑤𝑑𝑥 

 

or                                                                                                                                                (4.3) 

 

Equation 4.3 implies that the first derivative of the shearing force with respect to the distance is 
equal to the intensity of the distributed load. Equation 4.3 suggests the following expression: 

 

                                                                                                                                                   (4.4) 

 

Equation 4.4 states that the change in the shear force is equal to the area under the load diagram. 
Equation 4.1 and 4.3 suggest the following:                       

 

                                                                                                                                             (4.5)  

                                                                                                

Equation 4.5 implies that the second derivative of the bending moment with respect to the 
distance is equal to the intensity of the distributed load.  
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Example 4.1 

Draw the shearing force and bending moment diagrams for the cantilever beam supporting a 
concentrated load at the free end, as shown in Figure 4.4a. 
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Fig.  4.4. Cantilever beam. 
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• Draw the free-body diagram of the structure. 
• Check the stability and determinacy of the structure. If the 

structure is stable and determinate, proceed to the next step 
of the analysis. 

• Determine the unknown reactions by applying the conditions 
of equilibrium.  

• Pass an imaginary section perpendicular to the neutral axis 
of the structure at the point where the internal forces are to 
be determined. The passed section divides the structure into 
two parts. Consider either part of the structure for the 
computation of the desired internal forces. 

• For axial force computation, determine the summation of the 
axial forces on the part being considered for analysis. 

• For shearing force and bending moment computation, first 
write the functional expression for these internal forces for 
the segment where the section lies, with respect to the 
distance 𝑥 from the origin. 

• Compute the principal values of the shearing force and the 
bending moment at the segment where the section lies. 

• Draw the axial force, shearing force, and bending moment 
diagram for the structure, noting the sign conventions 
discussed in section 4.3. 

• For cantilevered structures, step three could be omitted by 
considering the free-end of the structure as the initial starting 
point of the analysis. 

 
 

Procedure for Computation of Internal Forces 
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Solution 
 
Support reactions. First, compute the reactions at the support. Since the support at B is fixed, there 
will be three reactions at that support, namely 𝐵௬, 𝐵௫, and 𝑀஻, as shown in the free-body diagram 
in Figure 4.4b. Applying the conditions of equilibrium suggests the following: 
 
           ∑ 𝑀஻ ൌ  0:      ሺ5 kሻሺ3 ftሻ െ 𝑀 ൌ  0 
 
                            𝑀 ൌ  15 k. ft 
 
           ∑ 𝐹௬  ൌ  0:     െ 5k ൅ 𝐵௬ ൌ  0 
 
                                            𝐵௬ ൌ  5 k 
 
           ∑ 𝐹௫ ൌ  0:     𝐵௫ ൌ  0 
 
 
Shearing force (SF). 
 
Shearing force function. Let 𝑥 be the distance of an arbitrary section from the free end of the 
cantilever beam (Figure 4.4b). The shearing force at that section due to the transverse forces acting 
on the segment of the beam to the left of the section (see Figure 4.4e) is 𝑉 ൌ  െ5 k. 
 
 
 

5 k 

ሺ𝑒ሻ  

𝑥 M 

V 

ሺെ𝑆𝐹ሻ

𝐹 

𝐹 



The negative sign is indicative of a negative shearing force. This is due to the fact that the sign 
convention for a shearing force states that a downward transverse force on the left of the section 
under consideration will cause a negative shearing force on that section. 
 
Shearing force diagram. Note that because the shearing force is a constant, it must be of the same 
magnitude at any point along the beam. As a convention, the shearing force diagram is plotted 
above or below a line corresponding to the neutral axis of the beam, but a plus sign must be 
indicated if it is a positive shearing force, and a minus sign should be indicated if it is a negative 
shearing force, as shown in Figure 4.4c. 
 
Bending moment (BM). 
 
Bending moment function. By definition, the bending moment at a section is the summation of the 
moments of all the forces acting on either side of the section. Thus, the expression for the bending 
moment of the 5 k force on the section at a distance 𝑥 from the free end of the cantilever beam is 
as follows: 
 
    𝑀 ൌ  െ5𝑥 
    When 𝑥 ൌ  0, 𝑀 ൌ  െሺ5 kሻሺ0ሻ  ൌ  0 
    When 𝑥 ൌ  3 ft, 𝑀 ൌ  െሺ5 kሻሺ3 ftሻ  ൌ  െ15 k. ft 
 
 
 
 
The obtained expression is valid for the entire beam (the region 0 ൏ 𝑥 ൏ 3 ftሻ. The negative sign 
indicates a negative moment, which was established from the sign convention for the moment. As 
seen in Figure 4.4f, the moment due to the 5 k force tends to cause the segment of the beam on the 
left side of the section to exhibit an upward concavity, and that corresponds to a negative bending 
moment, according to the sign convention for bending moment. 
 
Bending moment diagram. Since the function for the bending moment is linear, the bending 
moment diagram is a straight line. Thus, it is enough to use the two principal values of bending 
moments determined at 𝑥 ൌ  0 ft and at 𝑥 ൌ  3 ft to plot the bending moment diagram. As a 
convention, negative bending moment diagrams are plotted below the neutral axis of the beam, 
while positive bending moment diagrams are plotted above the axis of the beam, as shown is Figure 
4.4d. 
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Example 4.2 

Draw the shearing force and bending moment diagrams for the cantilever beam subjected to a 
uniformly distributed load in its entire length, as shown in Figure 4.5a. 
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Fig.  4.5. Cantilever beam. 
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Solution 
 
Support reactions. First, compute the reactions at the support. Since the support at B is fixed, there 
will possibly be three reactions at that support, namely 𝐵௬, 𝐵௫, and 𝑀஻, as shown in the free-body 
diagram in Figure 4.4b. Applying the conditions of equilibrium suggests the following:  
 
           ∑ 𝑀஻ ൌ  0:      ሺ20 kN/mሻሺ5 mሻሺ2.5 mሻ െ 𝑀 ൌ  0 
 
                            𝑀 ൌ  250 kN. m 
 
           ∑ 𝐹௬ ൌ  0:     െ ሺ20 kN/mሻሺ5ሻ ൅ 𝐵௬ ൌ  0 
 
                              𝐵௬ ൌ  100 kN 
 
           ∑ 𝐹௫ ൌ  0:     𝐵௫ ൌ  0 
 
Shearing force (SF). 
 



Shearing force function. Let 𝑥 be the distance of an arbitrary section from the free end of the 
cantilever beam, as shown in Figure 4.5b. The shearing force of all the forces acting on the segment 
of the beam to the left of the section, as shown in Figure 4.5e, is determined as follows: 
 
 
0 ൏ 𝑥 ൏ 5 
V ൌ  െ20𝑥 
When 𝑥 ൌ 0, 𝑉 ൌ  0  
When 𝑥 ൌ 2.5 m, 𝑉 ൌ െ50 kN  
When 𝑥 ൌ 5 m, 𝑉 ൌ െ100 kN  
 
      
 
The obtained expression is valid for the entire beam. The negative sign indicates a negative 
shearing force, which was established from the sign convention for a shearing force. The 
expression also shows that the shearing force varies linearly with the length of the beam.  
 
Shearing force diagram. Note that because the expression for the shearing force is linear, its 
diagram will consist of straight lines. The shearing force at 𝑥 ൌ  0 m and 𝑥 ൌ  5 m were 
determined and used for plotting the shearing force diagram, as shown in Figure 4.5c. As shown 
in the diagram, the shearing force varies from zero at the free end of the beam to 100 kN at the 
fixed end. The computed vertical reaction of 𝐵௬ at the support can be regarded as a check for the 
accuracy of the analysis and diagram.  
 
Bending moment (BM). 
 
Bending moment expression. The expression for the bending moment at a section of a distance 𝑥 
from the free end of the cantilever beam is as follows: 
 
 0 ൏ 𝑥 ൏ 5 m        

M ൌ െଶ଴௫మ

ଶ
 

When 𝑥 ൌ  0, 𝑀 ൌ 0  
When 𝑥 ൌ  2.5 m, 𝑀 ൌ െ62.5 kN. m  
When 𝑥 ൌ  5 m, 𝑀 ൌ െ250 kN. m  
 
                         
The negative sign indicates a negative moment, which was established from the sign convention 
for moment. As seen in Figure 4.5f, the moment due to the distributed load tends to cause the 
segment of the beam on the left side of the section to exhibit an upward concavity, and that 
corresponds to a negative bending moment, according to the sign convention for bending moment. 
 
Bending moment diagram. Since the function for the bending moment is parabolic, the bending 
moment diagram is a curve. In addition to the two principal values of bending moment at 𝑥 ൌ
 0 m and at 𝑥 ൌ  5 m, the moments at other intermediate points should be determined to correctly 
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draw the bending moment diagram. The bending moment diagram of the beam is shown in Figure 
4.5d. 
 
 
 
 

Draw the shearing force and bending moment diagrams for the cantilever beam subjected to the 
loads shown in Figure 4.6a. 

 

 
Support reactions. The free-body diagram of the beam is shown in Figure 4.6b. First, compute the 
reactions at the support B. Applying the conditions of equilibrium suggests the following:  
 
           ∑ 𝑀஻ ൌ  0: ሺ3 k/ftሻሺ2 ftሻሺ3 mሻ ൅ ሺ10 kሻሺ1ሻ െ 𝑀 ൌ  0 
 

 

 
  Example 4.3 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

1
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M൫kips . ft൯

6

1
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𝐴
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𝑥

ሺ𝑏ሻ

𝐷 

𝐶 𝐵𝐴 
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𝐷

1 2  1 

ሺ𝑎ሻ

Fig.  4.6. Cantilever beam. 
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                            𝑀 ൌ  28 k. ft 
 

           ∑ 𝐹௬ ൌ 0: െ ቀ3 ୩

୤୲
ቁ ሺ2 ftሻ െ 10 k ൅ 𝐷௬ ൌ  0 

 
                          𝐷௬ ൌ  16 k 
 
           ∑ 𝐹௫ ൌ  0: 𝐷௫ ൌ  0 
 
 
Shearing force and bending moment functions. Due to the discontinuity of the distributed load at 
point B and the presence of the concentrated load at point C, three regions describe the shear and 
moment functions for the cantilever beam. The functions and the values for the shear force (V) and 
the bending moment (M) at sections in the three regions at a distance 𝑥 from the free-end of the 
beam are as follows: 
 
Segment AB 0 ൏ 𝑥 ൏ 2 ft 

 
𝑉 ൌ  െ3𝑥  
When 𝑥 ൌ  0, 𝑉 ൌ  0  
When 𝑥 ൌ 1, 𝑉 ൌ  െ3 kip  
When 𝑥 ൌ 2 ft, 𝑉 ൌ  െ6 kip  
 

𝑀 ൌ  െଷ௫మ

ଶ
 

When 𝑥 ൌ  0, 𝑀 ൌ  0  
When 𝑥 ൌ  1 ft, 𝑀 ൌ  െ1.5 kip. ft 
When 𝑥 ൌ  2 ft, 𝑀 ൌ  െ6 kip. ft  
 
Segment BC 2 ft ൏ 𝑥 ൏ 3 ft 
𝑉 ൌ  െ3ሺ2ሻ  ൌ  െ6 kip 

When 𝑥 ൌ  2 ft, 𝑀 ൌ  െ6 kip. ft  
When 𝑥 ൌ  3 ft, 𝑀 ൌ  െ12 kip. ft  
 
Segment CD   3 ft ൏ 𝑥 ൏ 4 ft 
V ൌ  െሺ3ሻሺ2ሻ െ 10 ൌ  െ16 kips  
𝑀 ൌ  െሺ3ሻሺ2ሻሺ𝑥 െ 1ሻ െ 10ሺ𝑥 െ 3ሻ 
When 𝑥 ൌ  3 ft, 𝑀 ൌ െ12 kip. ft  
When 𝑥 ൌ  4 ft, 𝑀 ൌ  െ28 kip. ft  
 
 
 
The computed shearing force can be checked in part with the support reactions shown on the free-
body diagram in Figure 4.6b.  
 

 

ሺ𝑒ሻ 

൫3 ൯ሺ𝑥ሻ 

𝑥

V 

M

ቀ௫
ଶ
ቁ 

𝑀 ൌ  െ3ሺ2ሻሺ𝑥 െ 1ሻ  ሺ𝑓ሻ 

൫3 k/ft ൯൫2 ft൯ 

𝑥 M 

V
ሺ𝑥 െ 1ሻ 

ሺ𝑔ሻ

൫3 k/ft ൯൫2 ft൯ 

𝑥

M 

V

ሺ𝑥 െ 1ሻ 

10 kips 

ሺ𝑥 െ 3ሻ 



Shearing force and bending moment diagrams. The computed values of the shearing force and 
bending moment are plotted in Figure 4.6c and Figure 4.6d. It is important to remember that there 
will always be a sudden change in the shearing force diagram where there is a concentrated load 
in the beam. The numerical value of the change should be equal to the value of the concentrated 
load. For instance, at point C where the concentrated load of 10 kips is located in the beam, the 
change in shearing force in the shear force diagram is 16 k - 6k = 10 kips. The bending moment 
diagram is a curve in portion AB and is straight lines in segments BC and CD. 
 
 
 

Draw the shearing force and bending moment diagrams for the beam with an overhang subjected 
to the loads shown in Figure 4.7a. 
 

  Example 4.4 
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Fig.  4.7. Beam with an overhang. 
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Solution 
 
Support reactions. The reactions at the supports are shown in the free-body diagram of the beam 
in Figure 4.7b. They are computed by applying the conditions of equilibrium, as follows: 
 

൅↶ ෍ 𝑀஺ ൌ  0 

െሺ14ሻሺ3ሻ െ ሺ10ሻሺ8ሻ െ ሺ8ሻሺ8ሻሺ4ሻ ൅ 𝐵௬ሺ6ሻ  ൌ  0 
𝐵௬ ൌ  63 kips                                                                                 𝐵௬ ൌ  63 ↑ 
൅ → ∑ 𝐹௫ ൌ  0    A௫ ൌ  0                                                              𝐴௫ ൌ  0 
൅↑ ∑ 𝐹௬ ൌ  0  
63 ൅ 𝐴௬ െ 14 െ 10 െ ሺ8ሻሺ8ሻ  ൌ  0 
𝐴௬ ൌ  25 kips                                                                                 𝐴௬ ൌ  25 kips ↑ 
 
Shear and bending moment functions. Due to the concentrated load at point B and the overhanging 
portion CD, three regions are considered to describe the shearing force and bending moment 
functions for the overhanging beam. The expression for these functions at sections within each 
region and the principal values at the end points of each region are as follows:  
 
 
0 ൏ 𝑥 ൏ 3 
𝑉 ൌ  25 െ 8𝑥  
When 𝑥 ൌ  0, 𝑉 ൌ 25 kips  
When 𝑥 ൌ  3, 𝑉 ൌ 1 kip  
  

𝑀 ൌ  25𝑥 െ ଼௫మ

ଶ
 

When 𝑥 ൌ  0, 𝑀 ൌ  0  
When 𝑥 ൌ  3, 𝑀 ൌ  39 kip. ft  
  
3 ൏ 𝑥 ൏ 6 
𝑉 ൌ  25 െ 14 െ 8𝑥  
When 𝑥 ൌ  3, 𝑉 ൌ  െ13 kips  
When 𝑥 ൌ  6, 𝑉 ൌ  െ37 kips  

𝑀 ൌ  25𝑥 െ 14ሺ𝑥 െ 3ሻ െ ଼௫మ

ଶ
 

 
When 𝑥 ൌ  3, 𝑀 ൌ 39 k. ft  
When 𝑥 ൌ  6, 𝑀 ൌ  െ36 kip. ft  
  
0 ൏ 𝑥 ൏ 2 
𝑉 ൌ  10 ൅ 8𝑥  
When 𝑥 ൌ  0,  𝑉 ൌ  10 kips  
When 𝑥 ൌ  2, 𝑉 ൌ  26 kips 

ሺ𝑒ሻ  

൫8 ൯ሺ𝑥ሻ 

𝑥

V 

M 

ቀ௫
ଶ
ቁ 

25 kips 

ሺ𝑓ሻ 

൫8 ൯ሺ𝑥ሻ 

𝑥 M 

V 
ሺ𝑥 െ 3ሻ ቀ௫

ଶ
ቁ 

14 kips 

25 kips 

𝑥 

൫8 ൯ሺ𝑥ሻ 

ቀ௫
ଶ
ቁ 

10 kips 

ሺ𝑔ሻ  

V
M 



 

𝑀 ൌ  10𝑥 െ ଼௫మ

ଶ
 

When 𝑥 ൌ  0, 𝑀 ൌ  0  
When 𝑥 ൌ  2, 𝑀 ൌ  െ36 kip. ft  
 
Shearing force and bending moment diagram. The determined shearing force and moment diagram 
at the end points of each region are plotted in Figure 4.7c and Figure 4.7d. For accurate plotting of 
the bending moment curve, it is sometimes necessary to determine some values of the bending 
moment at intermediate points by inserting some distances within the region into the obtained 
function for that region. Notice that at the location of concentrated loads and at the supports, the 
numerical values of the change in the shearing force are equal to the concentrated load or reaction.  
 
 
 
 

Draw the shearing force and bending moment diagrams for the beam with an overhang subjected 
to the loads shown in Figure 4.8a. Determine the position and the magnitude of the maximum 
bending moment. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

10 

𝐴 
𝐵 

𝐶

1.5 4 

 
  Example 4.5 

2 kN/m

ሺ𝑎ሻ 

Fig.  4.8. Beam with an overhang. 
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Support reactions. The reactions at the supports of the beam are shown in the free-body diagram 
in Figure 4.8b. The reactions are computed by applying the following equations of equilibrium:  
 
൅↶ ∑ 𝑀஺ ൌ  0  

െ ቀଵ
ଶ

Solution 

ቁ ሺ4ሻሺ10ሻ ቀଶ
ଷ

ൈ 4ቁ െ ሺ2ሻሺ1.5ሻሺ4.75ሻ ൅ ሺ4ሻ𝐵௬ ൌ  0 

𝐵௬ ൌ  16.90 kN ↑ 
൅↑ ∑ 𝐹௬ ൌ  0   

𝐴௬ ൅ 16.90 െ  ቀଵ
ଶ
ቁ ሺ4ሻሺ10ሻ െ ሺ2ሻሺ1.5ሻ  ൌ  0 

𝐴௬ ൌ  6.10 kN ↑ 
 

൅ → ෍ 𝐹௫ ൌ  0 

𝐴௫ ൌ  0 
 
Shear and bending moment functions. Due to the discontinuity in the shades of distributed loads 
at the support B, two regions of x are considered for the description and moment functions, as 
shown below: 
 
0 ൏ 𝑥 ൏ 4 

𝑉 ൌ  6.10 െ ቀଵ
ଶ
ቁ ሺ𝑥ሻ ቀଵ଴௫

ସ
ቁ 

When 𝑥 ൌ  0, 𝑉 ൌ  6.10 kN  
When 𝑥 ൌ  2, 𝑉 ൌ  1.1 kN  
 
When 𝑥 ൌ  4, 𝑉 ൌ െ13.9 kN  
 

𝑀 ൌ  6.10𝑥 െ ቀଵ
ଶ
ቁ ሺ𝑥ሻ ቀଵ଴௫

ସ
ቁ ቀଵ

ଷ
𝑥ቁ 

When 𝑥 ൌ  0, 𝑀 ൌ 0  
When 𝑥 ൌ  2, 𝑀 ൌ 8.87 kN. m  
When 𝑥 ൌ  4, 𝑀 ൌ െ2.3 kN. m  
 
0 ൏ 𝑥 ൏ 1.5 
𝑉 ൌ  2𝑥 
When 𝑥 ൌ  0, 𝑉 ൌ  0  
When 𝑥 ൌ  1.5,  𝑉 ൌ  3 kN  
 

𝑀 ൌ  െሺ2ሻሺ𝑥ሻ ቀ௫
ଶ
ቁ 

When 𝑥 ൌ  0, 𝑀 ൌ  0  
When 𝑥 ൌ 1.5 m, 𝑀 ൌ  െ2.3 kN. m  
 

6.10 kN 

𝐴

ቀଵ
ଶ

ቁ ሺ𝑥ሻ ቀଵ଴௫
ସ

ቁ 

V 
M 

𝑥

ቀ௫
ଷ
ቁ 

ሺ𝑒ሻ 

𝑥 

൫2 ൯ሺ𝑥ሻ 

ቀ௫
ଶ
ቁ 

ሺ𝑓ሻ

V 

M 



 
Shearing force and bending moment diagrams. The computed values of the shearing force and 
bending moment are plotted in Figure 4.8c and Figure 4.8d.  Observe that the values of the shear 
force at the supports are equal to the values of the support reactions. Also, notice in the diagram 
that the shear in the region AB is a curve and the shear in the region BC is a straight, which all 
correspond to the parabolic and linear functions respectively obtained for the regions. The bending 
moment diagrams for both regions are curvilinear. The curve for the AB region is deeper than that 
in the BC region. This is because the obtained function for the AB region is cubical while that for 
the BC region is parabolic. 
 
Position and magnitude of maximum bending moment.  Maximum bending moment occurs where 
the shearing force equals zero. As shown in the shearing force diagram, the maximum bending 
moment occurs in the portion 𝐴𝐵. Equating the expression for the shear force for that portion as 
equal to zero suggests the following:  
 

𝑉 ൌ  6.10 െ ଵ଴௫మ

଼
ൌ  0,  

𝑥 ൌ  ටሺల.భሻሺఴሻ
భబ

 ൌ  2.21 m  

 
The magnitude of the maximum bending moment can be determined by putting 𝑥 ൌ 2.21 m into 
the expression for the bending moment for the portion AB. Thus,  
 

𝑀௠௔௫ ൌ  6.10𝑥 െ ൫భ
మ
൯ሺ𝑥ሻ൫భబೣ

ర
൯൫భ

య
𝑥൯  ൌ  ሺ6.1ሻሺ2.21ሻ െ ሺభబሻ൫మ.మభయ൯

మర
ൌ  8.98 kN. m  

 
 
 
 

Draw the shearing force and bending moment diagrams for the compound beam subjected to the 
loads shown in Figure 4.9a. 
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Fig.  4.9. Compound beam. 
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Solution 
 
Free-body diagram. The free-body diagram of the beam is shown in Figure 4.9b. 
 
Classification of structure. The compound beam has 𝑟 ൌ  4, 𝑚 ൌ  2, and 𝑓௜ ൌ  2. Since 4 ൅ 2 ൌ
 3ሺ2ሻ, the structure is statically determinate. 
 
Identification of the primary and complimentary structure. The schematic diagram of member 
interaction for the beam is shown in Figure 4.9c. The part AC is the primary structure, while part 
CD is the complimentary structure. 
 
Analysis of complimentary structure.  
 
Support reaction. 
 
𝐶௬ ൌ 𝐷௬ ൌ  25 kN, due to symmetry of loading. 
 
Shear force and bending moment. 
 
0 ൏ 𝑥 ൏ 0.5 
 
𝑉 ൌ 25 kN 
 
𝑀 ൌ  25𝑥 
When 𝑥 ൌ  0, 𝑀 ൌ 0  
When 𝑥 ൌ  0.5, 𝑀 ൌ  12.5 kN. m  
 

14𝑥 
25 kN 

𝑥

ሺ𝑓ሻ 



Analysis of primary structure.  
 
Support reactions. 
 

൅↶ ෍ 𝑀஺ ൌ  0 

2𝐵௬ െ ሺ14ሻሺ3ሻሺ1.5ሻ െ ሺ25ሻሺ3ሻ  ൌ  0 
𝐵௬ ൌ  69 kN ↑ 
൅↑ ∑ 𝐹௬ ൌ  0  
69 ൅ 𝐴௬ െ 25 െ ሺ14ሻሺ3ሻ  ൌ  0  
𝐴௬ ൌ  െ2 kN 
 
The negative implies the reaction at 𝐴 acts downward. 

൅ → ෍ 𝐹௫ ൌ  0 

𝐴௫ ൌ  0 
 
Shear force and bending moment functions. 
0 ൏ 𝑥 ൏ 1 
𝑉 ൌ  25 ൅ 14𝑥 
When 𝑥 ൌ  0, 𝑉 ൌ  25 kN  
When 𝑥 ൌ  1, 𝑉 ൌ  39 kN  
 

𝑀 ൌ  െ25𝑥 െ ଵସ௫మ

ଶ
 

When 𝑥 ൌ  0, 𝑀 ൌ  0  
When 𝑥 ൌ  1, 𝑀 ൌ  െ32 kN. m  
 
0 ൏ 𝑥 ൏ 2 
𝑉 ൌ  െ2 െ 14𝑥 
When 𝑥 ൌ  0, 𝑉 ൌ  െ2 kN  
When 𝑥 ൌ  2, 𝑉 ൌ  െ30 kN  
 

𝑀 ൌ  െ2𝑥 െ ଵସ௫మ

ଶ
 

When 𝑥 ൌ 0,  𝑀 ൌ  0  
When 𝑥 ൌ 2, 𝑀 ൌ  െ32 kN. m  
 
Shearing force and bending moment diagrams. The computed values of the shearing force and 
bending moment for the primary and complimentary part of the compound beam are plotted in 
Figure 4.9d and Figure 4.9e. 
 
 
 
 

A

𝐴௬ ൌ 2 kN 

14𝑥
ቀ௫

ଶ
ቁ 

𝑥 M 

V 

ሺ𝑔ሻ 
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Draw the shear force and bending moment diagrams for the frame subjected to the loads shown in 
Figure 4.10a. 
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Solution 
 
Free-body diagram. The free-body diagram of the beam is shown in Figure 4.10a. 
 
Support reactions. The reactions at the support of the beam can be computed as follows when 
considering the free-body diagram and using the equations of equilibrium:  
 
 
൅↑ ∑ 𝐹௬ ൌ  0  
𝐴௬ െ 20 ൌ  0 
𝐴௬ ൌ  20 kN ↑ 
 
൅ → ∑ 𝐹௫ ൌ  0    
 െ𝐴௫ ൅ ൫భ

మ
ൈ 10 ൈ 10൯  ൌ  0  

𝐴௫ ൌ  50 kN ←  
 

൅↶ ෍ 𝑀஺ ൌ  0 

𝑀஺ െ 20ሺ3ሻ െ ቀଵ
ଶ

ൈ 10 ൈ 10ቁ ቀଵ
ଷ

ൈ 10ቁ  ൌ  0 

𝑀஺ ൌ  226.67 kN. m ↶ 
 
Shearing force and bending moment functions of beam BC. 
 
0 ൏ 𝑥ଵ ൏ 3 
𝑉 ൌ  0 
𝑀 ൌ  0   
 
3 ൏ 𝑥ଶ ൏ 6 
𝑉 ൌ  20 kN  
𝑀 ൌ  െ20 ሺ𝑥 െ 3ሻ 
When 𝑥 ൌ  3, 𝑀 ൌ  0  
When 𝑥 ൌ 6, 𝑀 ൌ  െ60 kN. m  
Note that the distance 𝑥 to the section in the expressions is from the right end of the beam. 
  
Shearing force and bending moment functions of column AB. 
 
0 ൏ 𝑥ଷ ൏ 10 
𝑉 ൌ ൫భ

మ
ൈ 𝑥 ൈ 𝑥൯  

When 𝑥 ൌ  0, 𝑉 ൌ  0  
When 𝑥 ൌ  10, 𝑉 ൌ  50 kN  
 

𝑀 ൌ  െ20 ሺ3ሻ െ ቀଵ
ଶ

ൈ 𝑥 ൈ 𝑥ቁ ቀ௫
ଷ
ቁ 

When 𝑥 ൌ 0, 𝑀 ൌ െ60 kN. m  
When 𝑥 ൌ 10, 𝑀 ൌ െ226.67 kN. m  
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ሺ𝑒ሻ
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ଶ
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௫
ଷ
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V
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Note that the distance 𝑥 to the section on the column is from the top of the column and that a 
similar triangle was used to determine the intensity of the triangular loading at the section in the 

column, as follows: 
௫

ଵ଴
 ൌ ௪

ሺଵ଴ሻ
 or 𝑤 ൌ

ሺଵ଴௫ሻ

ଵ଴
. 

 
Shearing force and bending moment diagrams. The computed values of the shearing force and 
bending moment for the frame are plotted as shown in Figure 4.10c and Figure 4.10d. 
 
 
 
 

Draw the shearing force and bending moment diagrams for the frame subjected to the loads shown 
in Figure 4.11a. 
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Solution 
 
Free-body diagram. The free-body diagram of the beam is shown in Figure 4.11b. 
 
Support reactions. The reactions at the supports of the frame can be computed by considering the 
free-body diagram of the entire frame and part of the frame. The vertical reactions of the supports 
at points 𝐴 and 𝐸 are computed by considering the equilibrium of the entire frame, as follows:  
 

൅↶ ෍ 𝑀஺ ൌ  0 

െ2ሺ10ሻ ቀଵ଴
ଶ

ቁ െ 10ሺ4ሻ ൅ 𝐸௬ሺ8ሻ  ൌ  0 

𝐸௬ ൌ  17.5 kips                                             𝐸௬ ൌ  17.5 kips ↑ 
 
൅↑ ∑ 𝐹௬ ൌ  0  
𝐴௬ ൅ 17.5 െ 10 ൌ  0 
𝐴௬ ൌ  െ7.5 kips                                             𝐴௬ ൌ  7.5 kips ↓ 
The negative sign indicates that 𝐴௬ acts downward instead of upward as originally assumed. 
 
Considering the equilibrium of part CDE of the frame, the horizontal reaction of the support at E 
is determined as follows: 
 

൅↶ ෍ 𝑀஼ ൌ  0 

17.5ሺ4ሻ െ 𝐸௫ሺ10ሻ  ൌ  0 
𝐸௫ ൌ  7 kips ←                                              𝐸௫ ൌ  7 kips ← 
 
Again, considering the equilibrium of the entire frame, the horizontal reaction at 𝐴 can be 
computed as follows: 
 
൅ → ∑ 𝐹௫ ൌ  0    
 െ𝐴௫ ൅ 2ሺ10ሻ െ 7 ൌ  0  
𝐴௫ ൌ  13 kips ←                                              𝐴௫ ൌ  13 kips ← 
 
Shear and bending moment of the columns of the frame. 
 
Shear force and bending moment in column AB.  
0 ൏ 𝑥ଵ ൏ 10 ft 
𝑉 ൌ 13 െ 2𝑥  
When 𝑥 ൌ 0, 𝑉 ൌ  13 kips 
When 𝑥 ൌ 10 ft, 𝑉 ൌ െ7 kips  
 

𝑀 ൌ  13𝑥 െ 2 ቀ௫మ

ଶ
ቁ 

When 𝑥 ൌ  0, 𝑀 ൌ  0  
When 𝑥 ൌ  10 ft, 𝑀 ൌ  30 kip. ft  



When 𝑥 ൌ  5 ft, 𝑀 ൌ  30 kip. ft  
 
Shear force and bending moment in column ED.  
 
0 ൏ 𝑥ଶ ൏ 10 ft 
𝑉 ൌ  7 kips  
 
𝑀 ൌ  7𝑥 
When 𝑥 ൌ  0, 𝑀 ൌ  0  
When 𝑥 ൌ  10 ft, 𝑀 ൌ  70 kip. ft  
 
Shear and bending moment of the frame’s beam. 
 
Shear force and bending moment in beam BC. 
  
0 ൏ 𝑥ଷ ൏ 4 ft 
𝑉 ൌ  െ7.5 kips  

𝑀 ൌ  െ7.5𝑥 ൅ 13ሺ10ሻ െ 2ሺ10ሻ ቀଵ଴
ଶ

ቁ 

When 𝑥 ൌ  0, 𝑀 ൌ 30 kip.ft 
When 𝑥 ൌ 4 ft, 𝑀 ൌ 0  
  
Shear force and bending moment in beam CD.  
 
0 ൏ 𝑥ସ ൏ 4 ft 
𝑉 ൌ  െ17.5 kips  
𝑀 ൌ  17.5𝑥 െ 7ሺ10ሻ 
When 𝑥 ൌ  0, 𝑀 ൌ  െ70 kip.ft 
When 𝑥 ൌ  4 ft, 𝑀 ൌ  0  
The computed values of the shearing force and bending moment for the frame are plotted in 
Figure 4.11c and Figure 4.11d. 
 
 

 

 
 Chapter Summary 
 

Internal forces in beams and frames:  When a beam or frame is subjected to external transverse 
forces and moments, three internal forces are developed in the member, namely the normal force 
(N), the shear force (V), and the bending moment (M). These are shown in the following Figure.  
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𝑁

𝑉𝑀 

𝑃 
𝑤



 

 

Normal force: The normal force at any section of a beam can be determined by adding up the 
horizontal, normal forces acting on either side of the section. If the resultant of the normal force 
tends to move towards the section, it is regarded as compression and is denoted as negative. 
However, if it tends to move away from the section, it is regarded as tension and is denoted as 
positive. 

 

 

 

Shear force: The shear force at any section of a beam is determined as the summation of all the 
transverse forces acting on either side of the section. The sign convention adopted for shear forces 
is below. A diagram showing the variation of the shear force along a beam is called the shear force 
diagram. 

 

 

 

 

Bending moment: The bending moment at a section of a beam can be determined by summing up 
the moment of all the forces acting on either side of the section. The sign convention for bending 
moments is shown below. A graphical representation of the bending moment acting on the beam 
is referred to as the bending moment diagram. 

 

 

 

 

Relationship among distributed load, shear force, and bending moment: The following 
relationship exists among distributed loads, shear forces, and bending moments. 

 

െ𝑁 െ𝑁
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                                            ∆𝑀 ൌ ׬  𝑉 𝑑𝑥 
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 Practice Problems 
 
4.1. Draw the shearing force and the bending moment diagrams for the beams shown in Figure 
P4.1 through Figure P4.11. 
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Fig.  P4.1. Beam. Fig. P4.2. Beam. 
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Fig.  P4.3. Beam. 
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30 kN/m 

𝐷𝐴 
𝐵 

2 m 2 m 1.5 m 

𝐶 

46 kN 

 
 
 
 
 
 
 
 
 

Fig. P4.5. Beam. 
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Fig. P4.6. Beam. 
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Fig.  P4.7. Beam. 
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Fig. P4.8. Beam. 
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Fig.  P4.9. Beam. 

 
 
 
 
 
 
 
 
 
 
 
 
4.2. Draw the shearing force and the bending moment diagrams for the frames shown in Figure 
P4.12 through Figure P4.19. 

 

 

4 k

A
B

D
C 

Fig. P4.10. Beam.
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Fig.  P4.11. Beam. 



 

 

 

 

 

 

 

 

 
Fig.  P4.12. Frame. 
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Fig. P4.13. Frame. 
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Fig.  P4.14. Frame. 

 
 

Fig. P4.15. Frame. 
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Chapter 5 

Internal Forces in Plane Trusses  
 
5.1 Introduction 
 
A truss is a structure composed of straight, slender members connected at their ends by frictionless 
pins or hinges. A truss can be categorized as simple, compound, or complex. A simple truss is one 
constructed by first arranging three slender members to form a base triangular cell. Additional 
joints can be formed in the truss by subsequently adding two members at a time to the base cell, 
as shown in Figure 5.1a. A compound truss consists of two or more simple trusses joined together, 
as shown in Figure 5.1b. A complex truss is neither simple nor compound, as shown in Figure 
5.1c; its analysis is more rigorous than those of the previously stated trusses. 
 

 

 

                      

 

 

 

 

 

ሺ𝑎ሻ 

A B 

C D 

Base triangular cell 

New members 

New joint 

Fig.  5.1.  Classification of trusses.
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5.2 Types of Trusses 

The following are examples of different types of trusses for bridges and roofs. 
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Fig. 5.2.  Commonly used bridge trusses. 

 

 

 

 

 

 

 

 

 

 

Howe Pratt 

Warren Fink 

Fig. 5.3.  Commonly used roof trusses. 



5.3 Determinacy and Stability of Trusses 
 
The conditions of determinacy, indeterminacy, and instability of trusses can be stated as follows:    
 
 
 
                                                                                                                                                 (5.1)    
 
 
 
 
where 
 
𝑚 ൌ number of members. 
𝑟 ൌ number of support reactions. 
𝑗 ൌ number of joints. 
 
5.4 Assumptions in Truss Analysis 
 
1. Members are connected at their ends by frictionless pins. 
2. Members are straight and, therefore, are subjected only to axial forces. 
3. Members’ deformation under loads are negligible and of insignificant magnitude to cause 
appreciable changes in the geometry of the structure. 
4. Loads are applied only at the joints due to the arrangement of members. 
 
5.5 Joint Identification and Member Force Notation 
 

Truss joints can be identified using alphabets or numbers, depending on the preference of the 
analyst. However, consistency must be maintained in the chosen way of identification to avoid 
confusion during analysis. A bar force can be represented by any letter (𝐹 or 𝑁 or 𝑆), with two 
subscripts designating the member. For example, the member force 𝐹஺஻ in the truss shown in 
Figure 5.4 is the force in the member connecting joints 𝐴 and 𝐵. 
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C 
D 

A 

𝐹஺஻

𝐹஺஽ 

ሺ𝑎ሻ ሺ𝑏ሻ 

Imaginary cut 

Fig.  5.4.   Joint identification ሺ𝑎ሻ and bar force ሺ𝑏ሻ.   

𝑚 ൅ 𝑟 ൏ 2𝑗     structure is statically unstable 

𝑚 ൅ 𝑟 ൌ 2𝑗      structure is determinate 

𝑚 ൅ 𝑟 ൐ 2𝑗      structure is indeterminate 



 
 Example 5.1 
 
Classify the trusses shown in Figure 5.5 through Figure 5.9 as stable, determinate, or 
indeterminate, and state the degree of indeterminacy when necessary. 
 
 
 
 
 
 
 
 
 
 
𝑟 ൌ  3, 𝑚 ൌ  9, 𝑗 ൌ  6. From equation 3.5, 9 ൅ 3 ൌ  2ሺ6ሻ. Statically determinate.                                 
 

Fig. 5.5. Truss. 𝐹𝐵𝐷 

               

 
 
 
 
 
 
 
 
 
 

Fig. 5.6. Truss. 𝐹𝐵𝐷 

𝑟 ൌ  3, 𝑚 ൌ  10, 𝑗 ൌ  6.  From equation 3.5, 10 ൅ 3 ൐  2ሺ6ሻ.   Statically indeterminate to 1°. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.7. Truss. 
𝐹𝐵𝐷 

 
𝑟 ൌ  3, 𝑚 ൌ  9, 𝑗 ൌ  6. From equation 3.5, 9 ൅ 3 ൌ  2ሺ6ሻ. Statically determinate. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝐹𝐵𝐷 

Fig. 5.8. Truss. 

 
 
𝑟 ൌ  3, 𝑚 ൌ  24, 𝑗 ൌ  14.  From equation 3.5 , 24 ൅ 3 ൏  2ሺ14ሻ. Statically unstable. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.9. Truss. 

𝐹𝐵𝐷 

 
 
𝑟 ൌ  5, 𝑚 ൌ  11, 𝑗 ൌ  7. From equation 3.5, 11 ൅ 5 ൐  2ሺ7ሻ. 
Satically indeterminate to the 2°. 
 



 
5.6 Methods of Truss Analysis 
 
There are several methods of truss analysis, but the two most common are the method of joint and 
the method of section (or moment). 
 

 
In truss analysis, a negative member axial force implies that the member or the joints at both ends 
of the member are in compression, while a positive member axial force indicates that the member 
or the joints at both ends of the member are in tension.  
 

This method is based on the principle that if a structural system constitutes a body in equilibrium, 
then any joint in that system is also in equilibrium and, thus, can be isolated from the entire system 
and analyzed using the conditions of equilibrium. The method of joint involves successively 
isolating each joint in a truss system and determining the axial forces in the members meeting at 
the joint by applying the equations of equilibrium. The detailed procedure for analysis by this 
method is stated below. 
 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

5.6.1 Sign Convention 

5.6.2 Analysis of Trusses by Method of Joint 
 

• Verify the stability and determinacy of the structure. If the truss is 
stable and determinate, then proceed to the next step. 

• Determine the support reactions in the truss.  
• Identify the zero-force members in the system. This will 

immeasurably reduce the computational efforts involved in the 
analysis. 

• Select a joint to analyze. At no instance should there be more than two 
unknown member forces in the analyzed joint. 

• Draw the isolated free-body diagram of the selected joint, and indicate 
the axial forces in all members meeting at the joint as tensile (i.e. as 
pulling away from the joint). If this initial assumption is wrong, the 
determined member axial force will be negative in the analysis, 
meaning that the member is in compression and not in tension. 

• Apply the two equations ∑ 𝐹௫ ൌ  0 and ∑ 𝐹௬ ൌ  0 to determine the 
member axial forces. 

• Continue the analysis by proceeding to the next joint with two or 
fewer unknown member forces. 

Procedure for Analysis 



 Example 5.2 

Using the method of joint, determine the axial force in each member of the truss shown in Figure 
5.10a. 

 

 
Support reactions. By applying the equations of static equilibrium to the free-body diagram shown 
in Figure 5.10b, the support reactions can be determined as follows: 
 
൅↶ ∑ 𝑀஺ ൌ  0  
20ሺ4ሻ െ 12ሺ3ሻ ൅ ሺ8ሻ𝐶௬ ൌ  0 
𝐶௬ ൌ  െ5.5 kN                                   𝐶௬ ൌ  5.5 kN ↓ 
൅↑ ∑ 𝐹௬ ൌ  0   
𝐴௬ െ 5.5 ൅ 20 ൌ  0 
𝐴௬ ൌ  െ14.5 kN                                𝐴௬ ൌ  14.5 kN ↓ 
 

൅ → ෍ 𝐹௫ ൌ  0 

െ𝐴௫ ൅ 12 ൌ  0 
𝐴௫ ൌ  12 kN                                      𝐴௫ ൌ  12 kN ← 

Analysis of joints. The analysis begins with selecting a joint that has two or fewer unknown 
member forces. The free-body diagram of the truss will show that joints A and B satisfy this 
requirement. To determine the axial forces in members meeting at joint A, first isolate the joint 
from the truss and indicate the axial forces of members as 𝐹஺஻ and 𝐹஺஽, as shown in Figure 5.10c. 

The two unknown forces are initially assumed to be tensile (i.e. pulling away from the joint). If 
this initial assumption is incorrect, the computed values of the axial forces will be negative, 
signifying compression.  
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Fig.  5.10. Truss. 
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Solution 



Analysis of joint A. 

൅↑ ∑ 𝐹௬ ൌ  0   
𝐹஺஻𝑠𝑖𝑛36.87° െ 14.5 ൌ  0 
𝐹஺஻  ൌ  24.17 

൅ → ෍ 𝐹௫ ൌ  0 

െ12 ൅ 𝐹஺஽ ൅ 𝐹஺஻ cos 36.87° ൌ  0 
 
𝐹஺஽ ൌ  12 െ 24.17 cos 36.87° ൌ  െ7.34 kN                   

After completing the analysis of joint A, joint B or D can be analyzed, as there are only two 
unknown forces.  

Analysis of joint D. 

൅↑ ∑ 𝐹௬ ൌ  0   

𝐹஽஻ ൌ  0 

൅ → ෍ 𝐹௫ ൌ  0 

െ𝐹஽஺ ൅ 𝐹஽஼ ൌ  0 
𝐹஽஼ ൌ  𝐹஽஺ ൌ  െ7.34 kN 

 

Analysis of joint B. 

൅ → ෍ 𝐹௫ ൌ  0 

െ𝐹஻஺𝑠𝑖𝑛 53.13 ൅ 𝐹஻஼𝑠𝑖𝑛 53.13 ൅ 15 ൌ  0 
𝐹஻஼𝑠𝑖𝑛53.13 ൌ  െ15 ൅ 24.17𝑠𝑖𝑛53.13 ൌ  

𝐹஻஼ ൌ  5.42 kN 

 

 

 

 
Complex truss analysis can be greatly simplified by first identifying the “zero force members.” A 
zero force member is one that is not subjected to any axial load. Sometimes, such members are 
introduced into the truss system to prevent the buckling and vibration of other members. The truss-
member arrangements that result in zero force members are listed as follows: 

                                                                                 

F୅୆ 

F୅ୈ
36.87° A 

14.5 kN 

12 kN 

ሺ𝑐ሻ 

Fୈ୅ Fୈେ D

ሺ𝑑ሻ 

Fୈ୆ 

F୆େ F୆୅
F୆ୈ 

𝐵 

ሺ𝑒ሻ 

53.13

20 kN 

15 kN 

5.6.3 Zero Force Members 



1. If noncollinearity exists between two members meeting at a joint that is not subjected to 
any external force, then the two members are zero force members (see Figure 5.11a). 

2. If three members meet at a joint with no external force, and two of the members are 
collinear, the third member is a zero force member (see Figure 5.11b). 

3. If two members meet at a joint, and an applied force at the joint is parallel to one member 
and perpendicular to the other, then the member perpendicular to the applied force is a zero 
force member (see Figure 5.11c). 
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Fig.  5.11.  Zero force members. 
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5.6.4 Analysis of Trusses by Method of Section 
 
Sometimes, determining the axial force in specific members of a truss system by the method of 
joint can be very involving and cumbersome, especially when the system consists of several 
members. In such instances, using the method of section can be timesaving and, thus, preferable. 
This method involves passing an imaginary section through the truss so that it divides the system 
into two parts and cuts through members whose axial forces are desired. Member axial forces are 
then determined using the conditions of equilibrium. The detailed procedure for analysis by this 
method is presented below. 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 

 

 

 

  Example 5.3 

Using the method of section, determine the axial forces in members CD, CG, and HG of the truss 
shown in Figure 5.12a. 
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Fig. 5.12. Truss. 
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• Check the stability and determinacy of the structure. If the truss is 
stable and determinate, then proceed to the next step. 

• Determine the support reactions in the truss.  
• Make an imaginary cut through the structure so that it includes the 

members whose axial forces are desired. The imaginary cut divides 
the truss into two parts.  

• Apply forces to each part of the truss to keep it in equilibrium. 
• Select either part of the truss for the determination of member forces. 
• Apply the conditions of equilibrium to determine the member axial 

forces. 

Procedure for Analysis of Trusses by Method of Section 



 

Solution 
 
Support reactions. By applying the equations of static equilibrium to the free-body diagram in 
Figure 5.12b, the support reactions can be determined as follows: 
 
𝐴௬ ൌ  𝐹௬ ൌ  భలబ

మ
ൌ  80 kN  

൅ → ∑ 𝐹௫ ൌ  0     𝐴௫ ൌ  0    
 
Analysis by method of section. First, an imaginary section is passed through the truss so that it 
cuts through members CD, CG, and HG and divides the truss into two parts, as shown in Figure 
5.12c and Figure 5.12d. Member forces are all indicated as tensile forces (i.e., pulling away from 
the joint). If this initial assumption is wrong, the calculated member forces will be negative, 
showing that they are in compression. Either of the two parts can be used for the analysis. The 
left-hand part will be used for determining the member forces in this example. By applying the 
equation of equilibrium to the left-hand segment of the truss, the axial forces in members can be 
determined as follows:  
 
Axial force in member CD. To determine the axial force in member CD, find a moment about a 
joint in the truss where only CD will have a moment about that joint and all other cut members 
will have no moment. A close examination will show that the joint that meets this requirement is 
joint G. Thus, taking the moment about G suggests the following:  
 
൅↶ ∑ 𝑀ீ ൌ  0  
െ80ሺ6ሻ ൅ 80ሺ3ሻ െ 𝐹஼஽ሺ3ሻ ൌ  0 
𝐹஼஽ ൌ  െ80 𝑘𝑁                                                                80 kNሺ𝐶ሻ                                                                              

Axial force in member HG.  
 
൅↶ ∑ 𝑀஼ ൌ  0  
െ80ሺ3ሻ ൅ 𝐹ுீሺ3ሻ  ൌ  0 
𝐹ுீ ൌ  80 kN                                                                  80 kNሺ𝑇ሻ                                                                                

Axial force in member CG. The axial force in member CG is determined by considering the 
vertical equilibrium of the left-hand part. Thus, 
 
൅↑ ∑ 𝐹௬ ൌ  0   

80 െ 80 െ 𝐹஼ீ cos 45° ൌ  0 
𝐹஼ீ ൌ  0 

 

 



 

  Chapter Summary 

Internal forces in plane trusses: Trusses are structural systems that consist of straight and slender 
members connected at their ends. The assumptions in the analysis of plane trusses include the 
following: 

1. Members of trusses are connected at their ends by frictionless pins. 
2. Members are straight and are subjected to axial forces. 
3. Members’ deformations are small and negligible. 
4. Loads in trusses are only applied at their joints. 

 

Members of a truss can be subjected to axial compression or axial tension. Axial compression of 
members is always considered negative, while axial tension is always considered positive. 

Trusses can be externally or internally determinate or indeterminate. Externally determinate 
trusses are those whose unknown external reactions can be determined using only the equation of 
static equilibrium. Externally indeterminate trusses are those whose external unknown reaction 
cannot be determined completely using the equations of equilibrium. To determine the number of 
unknown reactions in excess of the equation of equilibrium for the indeterminate trusses, 
additional equations must be formulated based on the compatibility of parts of the system. 
Internally determinate trusses are those whose members are so arranged that just enough triangular 
cells are formed to prevent geometrical instability of the system. 

The formulation of stability and determinacy in trusses is as follows: 

                             𝑚 ൅ 𝑟 ൏ 2𝑗  Structure is unstable 

                             𝑚 ൅ 𝑟 ൌ 2𝑗  Structure is determinate                                

                             𝑚 ൅ 𝑟 ൐ 2𝑗  Structure is indeterminate 
 
Methods of analysis of trusses: The two common methods of analysis of trusses are the method 
of joint and the method of section (or moment). 
 
Method of joint: This method involves isolating each joint of the truss and considering the 
equilibrium of the joint when determining the member axial force. Two equations used in 
determining the member axial forces are ∑ 𝐹௫ ൌ  0 and ∑ 𝐹௬ ൌ  0. Joints are isolated consecutively 
for analysis based on the principle that  the number of the unknown member axial forces should 
never be more than two in the joint under consideration in a plane trust. 
 

 



 

 

 

 
 
 
 
 
Method of section: This method entails passing an imaginary section through the truss to divide 
it into two sections. The member forces are determined by considering the equilibrium of the part 
of the truss on either side of the section. This method is advantageous when the axial forces in 
specific members are required in a truss with several members.   
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 Practice Problems 

5.1 Classify the trusses shown in Figure P5.1a through Figure P5.1r. 
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P5.1. Truss classification. 

5.2 Determine the force in each member of the trusses shown in Figure P5.2 through Figure 
P5.12 using the method of joint. 
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Fig.  P5.2. Truss. 
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Fig. P5.3. Truss. 
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Fig.  P5.4. Truss. 
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Fig. P5.5. Truss. 
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Fig.  P5.6. Truss. 
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Fig. P5.7. Truss. 
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Fig.  P5.8. Truss. 
8 m 8 m

5 m

3 m 

20 kN 

40 kN 

Fig. P5.9. Truss.  
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Fig.  P5.10. Truss. 

 

 

 

 

 

 

 

 

 

 

 

 

5.3  Using the method of section, determine the forces in the members marked X of the trusses 
shown in Figure P5.13 through Figure P5.19. 
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Fig.  P5.13. Truss. 
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Fig.  P5.14. Truss. 
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Fig.  P5.15. Truss. 
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Fig.  P5.16. Truss. 
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Fig.  P5.17. Truss. 
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Fig. P5.18. Truss. 
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Chapter 6 

Arches and Cables  
 
6.1 Arches 
 
Arches are structures composed of curvilinear members resting on supports. They are used for 
large-span structures, such as airplane hangars and long-span bridges. One of the main 
distinguishing features of an arch is the development of horizontal thrusts at the supports as well 
as the vertical reactions, even in the absence of a horizontal load. The internal forces at any section 
of an arch include axial compression, shearing force, and bending moment. The bending moment 
and shearing force at such section of an arch are comparatively smaller than those of a beam of the 
same span due to the presence of the horizontal thrusts. The horizontal thrusts significantly reduce 
the moments and shear forces at any section of the arch, which results in reduced member size and 
a more economical design compared to other structures. Additionally, arches are also aesthetically 
more pleasant than most structures. 
 
6.1.1 Types of Arches 
 
Based on their geometry, arches can be classified  as semicircular, segmental, or pointed. Based 
on the number of internal hinges, they can be further classified as two-hinged arches, three-hinged 
arches, or fixed arches, as seen in Figure 6.1. This chapter discusses the analysis of three-hinge 
arches only.   
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ሺ𝑏ሻThree െ hinged arch 

ሺ𝑐ሻ Fixed arch 

 ሺ𝑎ሻTwo െ hinged arch 

Fig.  6.1. Types of arches.  



6.1.2 Three-Hinged Arch 
 
A three-hinged arch is a geometrically stable and statically determinate structure. It consists of two 
curved members connected by an internal hinge at the crown and is supported by two hinges at its 
base. Sometimes, a tie is provided at the support level or at an elevated position in the arch to 
increase the stability of the structure. 
 
6.1.2.1 Derivation of Equations for the Determination of Internal Forces in a Three-Hinged Arch 
 
Consider the section Q in the three-hinged arch shown in Figure 6.2a. The three internal forces at 
the section are the axial force, 𝑁ொ, the radial shear force, 𝑉ொ, and the bending moment, 𝑀ொ. The 
derivation of the equations for the determination of these forces with respect to the angle 𝜑 are as 
follows: 
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Fig.  6.2. Three െ hinged arch. 
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Bending moment at point Q. 
 
𝑀ఝ ൌ 𝐴௬𝑥 െ 𝐴௫𝑦 ൌ 𝑀ሺ௫ሻ

௕ െ 𝐴௫𝑦                                                                                      (6.1) 
 
where 
 
 𝑀ሺ௫ሻ

௕ ൌ moment of a beam of the same span as the arch. 
 𝑦 ൌ ordinate of any point along the central line of the arch.  
 
For a parabolic arch, 𝑦 ൌ  ర೑ೣ

ైమ ሺL െ 𝑥ሻ                                                                               (6.2) 

For a circular arch, 𝑦 ൌ  ටRଶ െ ൫ై
మ

െ 𝑥൯
ଶ

 R ൅ 𝑓                                                              (6.3) 

 
𝑓 ൌ  rise of arch. This is the vertical distance from the centerline to the arch’s crown.     
𝑥 ൌ horizontal distance from the support to the section being considered. 
𝐿 ൌ span of arch. 
𝑅 ൌ radius of the arch’s curvature. 
  
Radial shear force at point Q.  
  
 
 
 
 
 
 
 
𝑉ఝ ൌ 𝐴௬sinφ െ 𝐴௫cosφ ൌ 𝑉௕sinφ െ 𝐴௫cosφ                                                               (6.4) 
 
where 
 
 𝑉௕ ൌ shear of a beam of the same span as the arch. 
 
Axial force at a point Q. 
 
𝑁ఝ ൌ െ𝐴௬cosφ െ 𝐴௫sinφ ൌ െ𝑉௕cosφ െ 𝐴௫sinφ                                                         (6.5) 

 

 
A three-hinged arch is subjected to two concentrated loads, as shown in Figure 6.3a. Determine 
the support reactions of the arch. 
 

𝜑 

A௬cos𝜑 
A௬ 𝜑 

A௬sin𝜑 
radial line 

ሺ𝑒ሻ  

 
 Example 6.1 
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Fig.  6.3. Three െ hinged arch.  
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Solution 
 
The free-body diagrams of the entire arch and its segment CE are shown in Figure 6.3b and Figure 
6.3c, respectively. Applying the equations of static equilibrium suggests the following:  
 
Entire arch. 
 

൅↶ ෍ 𝑀஺ ൌ  0 

𝐸௬ሺ45ሻ െ 𝐸௫ሺ15ሻ െ 50ሺ5ሻ െ 35ሺ40ሻ  ൌ  0 
𝐸௬ሺ45ሻ െ 𝐸௫ሺ15ሻ  ൌ  1650                  
 
Arch segment CE. 
 

൅↶ ෍ 𝑀஼ ൌ  0 

𝐸௬ሺ25ሻ െ 𝐸௫ሺ30ሻ െ 35ሺ20ሻ  ൌ  0 
𝐸௬ሺ25ሻ െ 𝐸௫ሺ30ሻ  ൌ  700      
 
Solving equations 6.1 and 6.2 simultaneously yields the following: 
𝐸௬ ൌ  40 kN                                         𝐸௬ ൌ  40 kN ↑       



𝐸௫ ൌ 10  kN                                         𝐸௫ ൌ  10 kN ←      
 
Entire arch again. 
 

൅↑ ෍ 𝐹௬ ൌ  0 

𝐴௬ ൅ 40 െ 50 െ 35 ൌ  0 
𝐴௬  ൌ  45 kN                                        𝐴௬ ൌ  45 kN ↑     
 

൅→ ෍ 𝐹௫ ൌ  0 

𝐴௫ െ 10 ൌ  0 
𝐴௫ ൌ  10 kN                                         𝐴௫ ൌ  10 →       
 
 
 
 
 
 
 

Example 6.2 

A parabolic arch with supports at the same level is subjected to the combined loading shown in 
Figure 6.4a. Determine the support reactions and the normal thrust and radial shear at a point just 
to the left of the 150 kN concentrated load. 
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Fig.  6.4. Parabolic arch.  

 



Solution 
 
Support reactions. The free-body diagram of the entire arch is shown in Figure 6.4b, while that of 
its segment AC is shown in Figure 6.4c. Applying the equations of static equilibrium to determine 
the arch’s support reactions suggests the following:  
 
Entire arch. 
 

൅↶ ෍ 𝑀஺ ൌ  0 

𝐵௬ሺ40ሻ െ 150ሺ8ሻ െ 4ሺ20ሻሺ30ሻ  ൌ  0 
𝐵௬ ൌ  90 kN                                                  𝐵௬ ൌ  90 kN ↑     

൅↑ ෍ 𝐹௬ ൌ  0 

𝐴௬ ൅ 90 െ 150 െ 4ሺ20ሻ  ൌ  0 
𝐴௬ ൌ  140 kN                                               𝐴௬ ൌ  140 kN ↑    
 
Arch segment AC. 
 

൅↶ ෍ 𝑀஼ ൌ  0 

𝐴௫ሺ12ሻ െ 140ሺ20ሻ ൅ 150ሺ12ሻ  ൌ  0 
𝐴௫ ൌ  83.33 kN                                            𝐴௫ ൌ  83.33 kN →  
 
Entire arch again. 
 

൅→ ෍ 𝐹௫ ൌ  0 

83.33 െ 𝐵௫ ൌ  0 
𝐵௫ ൌ  83.33 kN                                           𝐵௫ ൌ  83.33 kN ⟵   
 
 
Normal thrust and radial shear. To determine the normal thrust and radial shear, find the angle 
between the horizontal and the arch just to the left of the 150 kN load. 
 
 
𝑦 ൌ  ర೑ೣ

ైమ ሺ𝐿 െ 𝑥ሻ  ൌ  ర೑
ైమሺ𝐿𝑥 െ 𝑥ଶሻ   

 tanθ ൌ  𝑦ᇱ  ൌ  ర೑
ైమሺ𝐿 െ 2𝑥ሻ 

          ൌ  రሺభమሻ
ሺరబሻమሺ40 െ 2 ൈ 8ሻ  ൌ  0.72  

          ൌ  35.75° 
 
                             
 
Normal thrust. 
 
 𝑁 ൌ 𝐴௬sinሺ35.75°ሻ ൅ 𝐴௫cosሺ35.75°ሻ     

35.75° 

140 kN 

83.33 kN 
8 m 

ሺ𝑑ሻ 



       ൌ  140sinሺ35.75°ሻ ൅ 83.33cosሺ35.75°ሻ  ൌ  149.42 kN                𝑁 ൌ  149.42 kN     
 
Radial shear. 
 
 𝑉 ൌ 𝐴௬cosሺ35.75°ሻ ൅ 𝐴௫sinሺ35.75°ሻ     
       ൌ 140cosሺ35.75°ሻ െ 83.33sinሺ35.75°ሻ  ൌ  64.93 kN                  𝑉 ൌ  64.93 kN        
 
 
 
 
 
 Example 6.3 

A parabolic arch is subjected to a uniformly distributed load of 600 lb/ft throughout its span, as 
shown in Figure 6.5a. Determine the support reactions and the bending moment at a section Q in 
the arch, which is at a distance of 18 ft from the left-hand support. 
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Fig.  6.5. Parabolic arch.  
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Solution 
 
Support reactions. The free-body diagram of the entire arch is shown in Figure 6.5b, while that of 
its segment AC is shown Figure 6.5c. Applying the equations of static equilibrium for the 
determination of the arch’s support reactions suggests the following:  
 
Free-body diagram of entire arch. Due to symmetry in loading, the vertical reactions in both 
supports of the arch are the same. Therefore, 𝐴௬ ൌ  𝐵௬ ൌ  ೢై

మ
 ൌ  బ.లሺభబబሻ

మ
 ൌ  30 kips 

 
The horizontal thrust at both supports of the arch are the same, and they can be computed by 
considering the free body diagram in Figure 6.5b. Taking the moment about point C of the free-
body diagram suggests the following:  
 
Free-body diagram of segment AC. The horizontal thrust at both supports of the arch are the 
same, and they can be computed by considering the free body diagram in Figure 6.5c. Taking the 
moment about point C of the free-body diagram suggests the following: 
 
 ൅↶ ∑ 𝑀஼ ൌ  0 
𝐴௫ሺ20ሻ െ 30ሺ50ሻ ൅ 0.6ሺ50ሻሺ25ሻ  ൌ  0 
𝐴௫ ൌ  37.5 kips              𝐴௫ ൌ  37.5 kips →  
 
Free-body diagram of entire arch again. 
 

൅↑ ෍ 𝐹௫ ൌ  0 

37.5 െ 𝐵௫ ൌ  0 
𝐵௫ ൌ 37.5 kips             𝐵௫ ൌ  37.5 kips ←    
 
Bending moment at point Q: To find the bending moment at a point Q, which is located 18 ft 
from support A, first determine the ordinate of the arch at that point by using the equation of the 
ordinate of a parabola. 
 
                    𝑦 ൌ  ర೑ೣ

ైమ ሺ𝐿 െ 𝑥ሻ 
 
                   𝑦௫ୀଵ଼୤୲ ൌ రሺమబሻሺభఴሻ

ሺభబబሻమ ሺ100 െ 18ሻ  ൌ  11.81ft 
 
The moment at Q can be determined as the summation of the moment of the forces on the left-
hand portion of the point in the beam, as shown in Figure 6.5c, and the moment due to the 
horizontal thrust, 𝐴௫. Thus, 𝑀ொ ൌ  𝐴௬ሺ18ሻ െ 0.6ሺ18ሻሺ9ሻ െ 𝐴௫ሺ11.81ሻ 
             ൌ  30ሺ18ሻ െ 0.6ሺ18ሻሺ9ሻ െ 37.5ሺ11.81ሻ  ൌ  െ75 lb. ft        𝑀ொ ൌ  െ75 lb. ft     
 
 
 
 
 



 
 

Example 6.4 

A parabolic arch is subjected to two concentrated loads, as shown in Figure 6.6a. Determine the 
support reactions and draw the bending moment diagram for the arch. 
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Fig.  6.6. Parabolic arch.  

 
 
Solution 
 
Support reactions. The free-body diagram of the entire arch is shown in Figure 6.6b. Applying the 
equations of static equilibrium determines the components of the support reactions and suggests 
the following:  
 
Entire arch. 
 

൅↶ ෍ 𝑀஺ ൌ  0 

𝐸௬ሺ40ሻ െ 50ሺ8ሻ െ ሺ20ሻሺ35ሻ  ൌ  0 
𝐸௬ ൌ  27.5 kips                                        𝐸௬ ൌ  27.5 kip ↑     

൅↑ ෍ 𝐹௬ ൌ  0 



𝐴௬ ൅ 27.5 െ 50 െ 20 ൌ  0 
𝐴௬ ൌ  42.5 kips                                       𝐴௬ ൌ  42.5 kips ↑    
 
Arch segment EC. 
 
For the horizontal reactions, sum the moments about the hinge at C. 
 

൅↶ ෍ 𝑀஼ ൌ  0 

27.5ሺ20ሻ െ 𝐸௫ሺ10ሻ െ 20ሺ15ሻ  ൌ  0 
𝐸௫ ൌ 25 kips                        𝐸௫ ൌ  25 kips ←    
 
Entire arch again. 
 

൅↑ ෍ 𝐹௫ ൌ  0 

െ25 ൅ 𝐴௫ ൌ  0 
𝐴௫ ൌ  25 kips                       𝐴௫ ൌ  25 kips →     
 
Bending moment at the locations of concentrated loads. To find the bending moments at sections 
of the arch subjected to concentrated loads, first determine the ordinates at these sections using the 
equation of the ordinate of a parabola, which is as follows: 
 
                    𝑦 ൌ ర೑ೣ

ಽమ ሺ𝐿 െ 𝑥ሻ 
 
                   𝑦௫ ୀ ଼୤୲ ൌ రሺభబሻሺఴሻ

ሺరబሻమ ሺ40 െ 8ሻ  ൌ  6.4 ft  
          
                   𝑦௫ ୀ ହ୤୲ ൌ రሺభబሻሺఱሻ

ሺరబሻమ ሺ40 െ 5ሻ  ൌ  4.375 ft 
 
When considering the beam in Figure 6.6d, the bending moments at B and D can be determined 
as follows:                   
                    𝑀஻ ൌ 𝐴௬ሺ8ሻ െ 𝐴௫ሺ6.4ሻ 
                            ൌ  42.5ሺ8ሻ െ 25ሺ6.4ሻ  ൌ  180 k. ft                      𝑀஻ ൌ  180 k. ft     
 
                    𝑀஽ ൌ 𝐸௬ሺ5ሻ െ 𝐸௫ሺ4.375ሻ 
                            ൌ  27.5ሺ5ሻ െ 25ሺ4.375ሻ  ൌ  28.13 k. ft              𝑀஽ ൌ  28.13 k. ft     
 
 
6.2 Cables 
 
Cables are flexible structures that support the applied transverse loads by the tensile resistance 
developed in its members. Cables are used in suspension bridges, tension leg offshore platforms, 
transmission lines, and several other engineering applications. The distinguishing feature of a cable 
is its ability to take different shapes when subjected to different types of loadings. Under a uniform 



load, a cable takes the shape of a curve, while under a concentrated load, it takes the form of several 
linear segments between the load’s points of application. 
 
6.2.1 General Cable Theorem 
 
The general cable theorem states that at any point on a cable that is supported at two ends and 
subjected to vertical transverse loads, the product of the horizontal component of the cable tension 
and the vertical distance from that point to the cable chord equals the moment which would occur 
at that section if the load carried by the cable were acting on a simply supported beam of the same 
span as that of the cable. 
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Fig.  6.7. Cable ሺ𝑎ሻ and beam ሺ𝑏ሻ.  
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To prove the general cable theorem, consider the cable and the beam shown in Figure 6.7a and 
Figure 6.7b, respectively. Both structures are supported at both ends, have a span L, and are 
subjected to the same concentrated loads at B, C, and D. A line joining supports A and E is referred 
to as the chord, while a vertical height from the chord to the surface of the cable at any point of a 
distance 𝑥 from the left support, as shown in Figure 6.7a, is known as the dip at that point. For 

 



equilibrium of a structure, the horizontal reactions at both supports must be the same. From static 
equilibrium, the moment of the forces on the cable about support B and about the section at a 
distance 𝑥 from the left support can be expressed as follows, respectively: 
 

൅↶ ෍ 𝑀஻ ൌ  0 

                                  െ𝐴௬𝐿 െ 𝐴௫𝐿ሺtanφሻ ൅ ∑ 𝑀஻௉ ൌ 0                                                        (6.6) 
 
where 
 
 ∑ 𝑀஻௉ ൌ the algebraic sum of the moment of the applied forces about support B. 
 

൅↶ ෍ 𝑀௫ ൌ 0 

                                െ𝐴௬𝑥 െ 𝐴௫ሾ𝑥tanφ െ 𝑦ሿ ൅ ∑ 𝑀௫௉ ൌ  0                                                   (6.7) 
 
Solving equation 6.1 suggest that  𝐴௬ ൌ ൣ∑ ಾಳುషಲೣಽ೟ೌ೙ക൧

ಽ
                     (6.8) 

                                                 
 
Substituting 𝐴௬ from equation 6.8 into equation 6.7 suggests the following: ൣ∑ ಾಳುషಲೣಽ೟ೌ೙ക൧ೣ

ಽ
൅

𝐴௫ሺ𝑥tanφ െ 𝑦ሻ ൌ ∑ 𝑀௫௉ 
 
or            ೣ ∑ ಾಳು

ಽ
െ 𝑥𝐴௫tanφ ൅ 𝑥𝐴௫tanφ െ 𝐴௫𝑦 ൌ ∑ 𝑀௫௉   

 
 
or                                                                                                                                                 (6.9)                         
 
 
To obtain the expression for the moment at a section 𝑥 from the right support, consider the beam 
in Figure 6.7b. First, determine the reaction at A using the equation of static equilibrium as follows:  
 
                   ∑ 𝑀஻ ൌ  0 
                        𝐴𝒚 ൌ ∑ ಾಳು

ಽ
                                                                                                       (6.10) 

 
The moment at a section of the beam at a distance 𝑥 from support 𝐴 ൌ 𝐴௬𝑥 െ ∑ 𝑀௫௉         (6.11) 
 
Substituting 𝐴௬ from equation 6.10 into equation 6.11 suggests the following:  
 

The moment at section 𝑥 ൌ ௫ ∑ ெಳು

௅
െ ∑ 𝑀௫௉                                                                          (6.12) 

 
The moment at a section of a beam at a distance 𝑥 from the left support presented in equation 6.12 
is the same as equation 6.9. This confirms the general cable theorem. 
 
 
 

𝐴௫𝑦 ൌ ௫ ∑ ெಳು

௅
െ ෍ 𝑀௫௉ 



 
 
 

Example 6.5 

A cable supports two concentrated loads at B and C, as shown in Figure 6.8a. Determine the sag 
at B, the tension in the cable, and the length of the cable. 
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Fig. 6.8. Cable. 
 
 
Solution 
 
Support reactions. The reactions of the cable are determined by applying the equations of 
equilibrium to the free-body diagram of the cable shown in Figure 6.8b, which is written as 
follows: 
 

൅↶ ෍ 𝑀஺ ൌ  0 

െ100ሺ2ሻ െ 80ሺ10ሻ ൅ 13𝐷௬ ൌ  0 
𝐷௬ ൌ  76.92 kN 
 

൅↑ ෍ 𝐹௬ ൌ  0 

 
𝐴௬ ൅ 76.92 െ 100 െ 80 ൌ  0 
𝐴௬ ൌ  103.08 kN 
 

൅↶ ෍ 𝑀஼ ൌ  0 

െ𝐴௫ሺ10ሻ ൅ 100ሺ8ሻ  ൌ  0 
𝐴௫ ൌ  80 kN 



 

൅→ ෍ 𝐹௫ ൌ  0 

െ𝐷௫ ൅ 80 ൌ  0 
𝐷௫ ൌ  80 kN 
 
Sag at B. The sag at point B of the cable is determined by taking the moment about B, as shown 
in the free-body diagram in Figure 6.8c, which is written as follows:  
 
 
 

൅↶ ෍ 𝑀஻ ൌ  0 

െ𝐴௬ሺ2ሻ ൅ 𝐴௫ሺ𝑦஻ሻ ൌ  0 

𝑦஻ ൌ ಲ೤ሺమሻ

ಲೣ
 ൌ  భబయ.బఴሺమሻ

ఴబ
  ୀ  ଶ.ହ଼ ୫       𝑦஻ ൌ  2.58 m    

 
 
Tension in cable. 
 
Tension at A and D. 
 

𝑇஺ ൌ 𝑇஺஻ ൌ ට൫𝐴௬൯
ଶ

൅ ሺ𝐴௫ሻଶ  ൌ ඥሺ103.08ሻଶ ൅ ሺ80ሻଶ ൌ  130.48 kN   

 

𝑇஽ ൌ 𝑇஽஼ ൌ ට൫D௬൯
ଶ

൅ ሺD௫ሻଶ  ൌ ඥሺ76.92ሻଶ ൅ ሺ80ሻଶ  ൌ  110.98 kN  

 
 
Tension in segment CB.  
 

൅→ ෍ 𝐹௫ ൌ  0 

𝑇஼஽cos73.3° െ 𝑇஼஻cos42.8° ൌ  0 
𝑇஼஻ ൌ ೅಴ವౙ౥౩ ሺళయ.య°ሻ

ౙ౥౩రమ.ఴ
  ୀ  భభబ.వఴ ౙ౥౩ ሺళయ.య°ሻ

ౙ౥౩రమ.ఴ
 ൌ  43.46 kN   

 
 
 
Length of cable. The length of the cable is determined as the algebraic sum of the lengths of the 
segments. The lengths of the segments can be obtained by the application of the Pythagoras 
theorem, as follows: 
 

𝐿 ൌ ඥሺ2.58ሻଶ ൅ ሺ2ሻଶ  ൅ ඥሺ10 െ 2.58ሻଶ ൅ ሺ8ሻଶ  ൅ ඥሺ10ሻଶ ൅ ሺ3ሻଶ ൌ  24.62 m    
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 Example 6.6 
 
A cable supports three concentrated loads at B, C, and D, as shown in Figure 6.9a. Determine the 
sag at B and D, as well as the tension in each segment of the cable. 
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Fig. 6.9. Cable. 
 
 
Solution 
 
Support reactions. The reactions shown in the free-body diagram of the cable in Figure 6.9b are 
determined by applying the equations of equilibrium, which are written as follows:  
 

൅↶ ෍ 𝑀஺ ൌ  0 

െ20ሺ3ሻ െ 30ሺ6ሻ െ 16ሺ11ሻ ൅ 14 ൌ  0 
𝐸௬ ൌ  29.71 kips 
 

൅↑ ෍ 𝐹௬ ൌ  0 

 
𝐴௬ ൅ 29.71 െ 20 െ 30 െ 16 ൌ  0 
𝐴௬  ൌ  36.29 kips 
 

൅↶ ෍ 𝑀஼ ൌ  0 

29.71ሺ8ሻ െ 𝐸௫ሺ4ሻ െ 16ሺ5ሻ  ൌ  0 
𝐸௫ ൌ  39.42 kips 
 

൅→ ෍ 𝐹௫ ൌ  0 

36.29 kips 

A 

B𝑥

By

3 ft 

𝑦B′

39.42 kips 

 ሺcሻ  



െ𝐴௫ ൅ 39.42 ൌ  0 
𝐴௫ ൌ  39.42 kips 
 
 
Sag. The sag at B is determined by summing the moment about B, as shown in the free-body 
diagram in Figure 6.9c, while the sag at D was computed by summing the moment about D, as 
shown in the free-body diagram in Figure 6.9d.  
 
Sag at B. 
  

↶ ൅ ෍ 𝑀஻ ൌ  0 

െ36.29ሺ3ሻ ൅ 39.42ሺ𝑦୆ᇲሻ  ൌ  0    
 𝑦୆ᇲ ൌ  2.76 ft.    
 
 
Sag at D. 
 

↶ ൅ ෍ 𝑀஽ ൌ  0 

29.71ሺ3ሻ ൅ 39.42ሺ𝑦஽ሻ ൌ  0    
𝑦஽ ൌ  2.26 ft.     
 
Tension. 
 
Tension at A. 
 

𝑇஺ ൌ 𝑇஺஻ ൌ ට൫𝐴௬൯
ଶ

൅ ሺ𝐴௫ሻଶ  ൌ ඥሺ36.29ሻଶ ൅ ሺ39.42ሻଶ ൌ  53.58 kips    

 
Tension at E. 
 

𝑇ா ൌ 𝑇ா஽ ൌ ට൫E௬൯
ଶ

൅ ሺE௫ሻଶ  ൌ ඥሺ29.71ሻଶ ൅ ሺ39.42ሻଶ ൌ  49.36 kips     

 
Tension at B. 
 

→ ൅ ෍ 𝐹௫ ൌ  0 

െ𝑇஻஺ cos 42.61° ൅ 𝑇஻஼ cos 30.96° ൌ  0 
𝑇஻஼ ൌ ೅ಳಲ ౙ౥౩ రమ.లభ°

ౙ౥౩ యబ.వల°
ୀ𝟓𝟑.𝟓𝟖ౙ౥౩రమ.లభ°

ౙ౥౩ యబ.వల°  ൌ  46 kips    
 
 
Tension at C. 
 

→ ൅ ෍ 𝐹௫ ൌ  0 

D𝑥 

D𝑦

𝑦D

29.71 kips 

39.42 kips 
E

D 
3 ft 

 ሺdሻ  

TBA 

TBC 

20 kips

B 42.61°  30.96°

 ሺeሻ  

C 
TCB  TCD 

30 kips

30.96° 

19.19°

 ሺfሻ  



െ𝑇஼஻ cos 30.96° ൅ 𝑇஼஽ cos 19.19° ൌ  0 
𝑇஼஽ ൌ ೅಴ಳ ౙ౥౩ యబ.వల°

ౙ౥౩భవ.భవ °
ୀ𝟒𝟔ౙ౥౩యబ.వల°

ౙ౥౩ భవ.భవ°  ൌ  41.77 kips    
 
 
Tension at D. 
 

→ ൅ ෍ 𝐹௫ ൌ  0 

െ𝑇஽஼sin70.81° ൅ 𝑇஽ாcos37° ൌ  0 
𝑇஽ா ൌ ೅ವ಴౩౟౤ ሺళబ.ఴభ°ሻ

ౙ౥౩యళ°
 ୀ రభ.ళళ ౩౟౤ ሺళబ.ఴభ°ሻ

ౙ౥౩యళ°
 ൌ  49.40 kN    

 

D
TDC 

TDE

16 kips

70.81° 

37°

 ሺgሻ 

 
 
6.2.2 Parabolic Cable Carrying Horizontal Distributed Loads 
 
To develop the basic relationships for the analysis of parabolic cables, consider segment BC of the 
cable suspended from two points A and D, as shown in Figure 6.10a. Point B is the lowest point of 
the cable, while point C is an arbitrary point lying on the cable. Taking B as the origin and denoting 
the tensile horizontal force at this origin as 𝑇଴ and denoting the tensile inclined force at C as 𝑇,  as 
shown in Figure 6.10b, suggests the following: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.10c suggests the following: 
 
tan θ ൌ ೏೤

೏ೣ
ൌ ೢೣ

೅బ
                                                                                                                    (6.13) 

 
Equation 6.13 defines the slope of the curve of the cable with respect to x. To determine the vertical 
distance between the lowest point of the cable (point B) and the arbitrary point C, rearrange and 
further integrate equation 6.13, as follows: 
 

A 

B

C 

D 

w/unit lenght 

𝑥 

ሺ𝑎ሻ 
Fig. 6.10. Suspended cable. 



               𝑑𝑦 ൌ ೢೣ
೅బ

𝑑𝑥 

        
׬     𝑑𝑦

௬
଴ ൌ ׬ ೢೣ

೅బ

௫
଴ 𝑑𝑥 

                  𝑦 ൌ ೢೣమ

మ೅೚
                                                                                                                (6.14) 

 
Summing the moments about C in Figure 6.10b suggests the following: 
 
 ↶ ൅ ∑ 𝑀௖ 
 

𝑤𝑥 ቀ௫
ଶ
ቁ െ 𝑇଴𝑦 ൌ  0 

 
Therefore, 𝑦 ൌ  ೢೣమ

మ೅బ
 

 
Applying Pythagorean theory to Figure 6.10c suggests the following: 
 

  𝑇 ൌ ඥሺ𝑇଴ሻଶ ൅ ሺ𝑤𝑥ሻଶ                                                                                                          (6.15) 
      
where 
 
𝑇 and 𝑇଴ are the maximum and minimum tensions in the cable, respectively. 
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 Example 6.7 
 
A cable supports a uniformly distributed load, as shown Figure 6.11a. Determine the horizontal 
reaction at the supports of the cable, the expression of the shape of the cable, and the length of 
the cable. 
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Fig.  6.11. Cable with uniformly distributed load.
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Solution 
 
As the dip of the cable is known, apply the general cable theorem to find the horizontal reaction.  
 
At point C, 𝑥 ൌ ై

మ
, 𝑦 ൌ ℎ  

 
The expression of the shape of the cable is found using the following equations: 

 
∑ 𝑀௫௉ ൌ ൫ೢಽ

మ
൯൫ಽ

ర
൯ ൌ ೢైమ

ఴ
   

෍ 𝑀஻௉ ൌ ௪୐మ

ଶ
 

𝐴௫ℎ ൌ ቀଵ/ଶ௅
௅

ቁ ቀ௪௅మ

ଶ
ቁ െ ቀ௪௅మ

଼
ቁ 

𝐴௫ ൌ ೢಽమ

ఴ೓
             

 
For any point Pሺ𝑥, 𝑦ሻ on the cable, apply cable equation. 
 



The moment at any section x due to the applied load is expressed as follows: 
 

෍ 𝑀௫ ൌ ௪௫మ

ଶ
 

 
The moment at support B is written as follows: 
 

෍ 𝑀஻ ൌ ௪௅మ

ଶ
 

 
Applying the general cable theorem yields the following:  
 
                          𝐴௫𝑦 ൌ ൫ೣ

ಽ
൯൫ೢಽమ

మ
൯ െ ೢೣమ

మ
 

                                  ൌ ൫ೢ
మ
൯ሺ𝑥ሻሺ𝐿 െ 𝑥ሻ 

                    ൫ೢಽమ

ఴ೓
൯𝑦 ൌ ൫ೢ

మ
൯ሺ𝑥ሻሺ𝐿 െ 𝑥ሻ 

   
                              𝑦 ൌ ర೓

ಽమ𝑥ሺ𝐿 െ 𝑥ሻ         
 
The length of the cable can be found using the following: 
 
 ሺ𝑑𝑆ሻଶ  ൌ  ሺ𝑑𝑥ሻଶ ൅ ሺ𝑑𝑦ሻଶ 
 

ሺ𝑑𝑆ሻଶ  ൌ  ሺ𝑑𝑥ሻଶ ቂ1 ൅ ൫೏೤
೏ೣ

൯
ଶ

ቃ       

 𝑆 ൌ ට1 ൅ ൫೏೤
೏ೣ

൯
ଶ

 𝑑𝑥   

 

 𝑆 ൌ ׬ 𝑑S
௅ಳ

଴ ൌ ׬ ට1 ൅ ൫೏೤
೏ೣ

൯
ଶ

 𝑑𝑥  ൌ ׬ ට1 ൅ ቀೢೣ
೅బ

ቁ
ଶ

 𝑑𝑥  
௅ಳ

଴
௅ಳ

଴                                             (6.16) 

 
The solution of equation 6.16 can be simplified by expressing the radical under the integral as a 
series using a binomial expansion, as presented in equation 6.17, and then integrating each term. 
 
√1 ൅ 𝑎  ൌ  ሺ1 ൅ 𝑎ሻଵ/ଶ  ൌ  1 ൅ భ

మ
𝑎 െ భ

ఴ
𝑎ଶ ൅ భ

భల
𝑎ଷ െ ൅ ఱ

భమఴ
𝑎ସ ൅ ళ

మఱల
𝑎ହ െ ⋯                            (6.17) 

 

Putting 𝑎 ൌ ቀೢೣ
೅బ

ቁ
ଶ
 into three terms of the expansion in equation 6.13 suggests the following:  

 

ට1 ൅ ቀೢೣ
೅బ

ቁ
ଶ

ൌ 1 ൅ భ
మ

ቀ ೢ
೅బ

ቁ
ଶ

Xଶ െ భ
ఴ

ቀ ೢ
೅బ

ቁ
ସ

𝑋ସ                                                                           (6.18) 

 
Thus, equation 6.16 can be written as the following:  
 

𝑆 ൌ න 𝑑𝑆
௅ಳ

଴
ൌ න ට1 ൅ ቀௗ௬

ௗ௫
ቁ

ଶ
 𝑑𝑥  ൌ න ൤1 ൅ ଵ

ଶ
ቀ௪

బ்
ቁ

ଶ
Xଶ െ ଵ

଼
ቀ௪

బ்
ቁ

ସ
𝑋ସ൨ 𝑑𝑥

௅ಳ

଴

௅ಳ

଴

 



 

  ൌ ൤𝑋 ൅ భ
ల

ቀ ೢ
೅బ

ቁ
ଶ

𝑋ଷ െ భ
రబ

ቀ ೢ
೅బ

ቁ
ସ

𝑋ହ൨ 

 

   ൌ 𝐿஻ ൅ భ
ల

ቀ ೢ
೅బ

ቁ
ଶ

𝐿஻
ଷ െ భ

రబ
ቀ ೢ

೅బ
ቁ

ସ
𝐿஻

ହ                                                                                          (6.19)                            

 

Putting 𝑇଴ ൌ ೢಽಳ
మ

మ೓
 into equation 6.19 suggests:  

 
       𝑆 ൌ 𝐿஻ ൅ ర೓మ

లಽಳ
െ భల೓ర

రబಽಳ
య  

          ൌ 𝐿஻ ൤1 ൅ మ
య

ቀ ೓
ಽಳ

ቁ
ଶ

 െ మ
ఱ

ቀ ೓
ಽಳ

ቁ
ସ

൨                                                                                     (6.20) 

 
 
 
 
 
 

Example 6.8 

A cable subjected to a uniform load of 240 N/m is suspended between two supports at the same 
level 20 m apart, as shown in Figure 6.12. If the cable has a central sag of 4 m, determine the 
horizontal reactions at the supports, the minimum and maximum tension in the cable, and the 
total length of the cable.   
 
 
 
 
 
 
 
 
 
 
 
 
       ሺ𝑎ሻ 
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Fig.  6.12. Cable.  
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Solution 
 
Horizontal reactions. Applying the general cable theorem at point C suggests the following: 
 
when 𝑥 ൌ ై

మ
, ℎ ൌ 4 m 

 

൅↶ ෍ 𝑀௫ ൌ ௪௅మ

଼
ൌ ଶସ଴ሺଶ଴ሻమ

଼
 ୀ ଵଶ଴଴଴ ୒୫ 

 

൅↶ ෍ 𝑀஻ ൌ ௪௅మ

ଶ
ൌ ଶସ଴ሺଶ଴ሻమ

ଶ
 ୀ ସ଼଴଴଴ ୒୫ 

𝐴௫ሺ4ሻ ൌ 48000 െ 12000  
                  𝐴௫ ൌ 𝐵௫ ൌ 9000 N      
 
Minimum and maximum tension. From the free-body diagram in Figure 6.12c, the minimum 
tension is as follows:  
 

↶ ൅ ෍ 𝑀௖ 

 

𝑤𝑥 ቀ௫
ଶ
ቁ െ 𝑇଴ℎ ൌ  0 

 

Therefore,  𝑇଴ ൌ  ೢೣమ

మ೓
ൌ ଶସ଴ሺଵ଴ሻమ

ଶሺସሻ
ൌ 3000 𝑁 

 
From equation 6.15, the maximum tension is found, as follows:  
 

𝑇௠௔௫ ൌ ඥሺ𝑇଴ሻଶ ൅ ሺ𝑤𝑥ሻଶ ൌ ඥሺ3000ሻଶ ൅ ሺ240 ൈ 10ሻଶ ൌ  3841.87 N       
 
The total length of cable: 

             𝑆 ൌ ሺ2ሻሺ10ሻ ቂ1 ൅ మ
య
൫ ర

భబ
൯

ଶ
 െ మ

ఱ
൫ ర

భబ
൯

ସ
ቃ  

                ൌ ሺ20ሻ ቂ1 ൅ మ
య
൫ ర

భబ
൯

ଶ
 െ మ

ఱ
൫ ర

భబ
൯

ସ
ቃ  

                ൌ 21.93 m        
 
 

 
Internal forces in arches and cables: Arches are aesthetically pleasant structures consisting of 
curvilinear members. They are used for large-span structures. The presence of horizontal thrusts 
at the supports of arches results in the reduction of internal forces in it members. The lesser shear 
forces and bending moments at any section of the arches results in smaller member sizes and a 
more economical design compared with beam design. 

 
 Chapter Summary 



Arches: Arches can be classified as two-pinned arches, three-pinned arches, or fixed arches based 
on their support and connection of members, as well as parabolic, segmental, or circular based on 
their shapes. Arches can also be classified as determinate or indeterminate. Three-pinned arches 
are determinate, while two-pinned arches and fixed arches, as shown in Figure 6.1, are 
indeterminate structures.  

Cables: Cables are flexible structures in pure tension. They are used in different engineering 
applications, such as bridges and offshore platforms. They take different shapes, depending on the 
type of loading. Under concentrated loads, they take the form of segments between the loads, while 
under uniform loads, they take the shape of a curve, as shown below.  

Some numerical examples have been solved in this chapter to demonstrate the procedures and 
theorem for the analysis of arches and cables.    

 

 
 
 

Practice Problems 

6.1 Determine the reactions at supports B and E of the three-hinged circular arch shown in      
Figure P6.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B
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A 

40 kN
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E
15 m 

Fig. P6.1. Three െ hinged circular arch.
 
 
6.2 Determine the reactions at supports A and B of the parabolic arch shown in Figure P6.2. Also 
draw the bending moment diagram for the arch. 
 
 
 
 
 
 

 



 
 
 
 
 
 
 
 
 
 
 

900 lb/ft 

60 ft 

A B

C 
25 ft 

60 ft 

Fig. P6.2. Parabolic arch. 
 
6.3 Determine the shear force, axial force, and bending moment at a point under the 80 kN load 
on the parabolic arch shown in Figure P6.3. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6.4 In Figure P6.4, a cable supports loads at point B and C. Determine the sag at point C and the 
maximum tension in the cable. 
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Fig.  P6.3. Parabolic arch.
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Fig.  P6.4. Cable. 

𝑦𝑐 



 
 
 
6.5 A cable supports three concentrated loads at points B, C, and D in Figure P6.5. Determine the 
total length of the cable and the length of each segment. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6.6 A cable is subjected to the loading shown in Figure P6.6. Determine the total length of the 
cable and the tension at each support. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6.7 A cable shown in Figure P6.7 supports a uniformly distributed load of 100 kN/m. Determine 
the tensions at supports A and C at the lowest point B. 
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20 k 12k
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Fig.  P6.5. Cable.  
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Fig. P6.6. Cable. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6.8 A cable supports a uniformly distributed load in Figure P6.8. Find the horizontal reaction at 
the supports of the cable, the equation of the shape of the cable, the minimum and maximum 
tension in the cable, and the length of the cable. 
 
 

 
 
6.9 A cable subjected to a uniform load of 300 N/m is suspended between two supports at the same 
level 20 m apart, as shown in Figure P6.9. If the cable has a central sag of 3 m, determine the 

A
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C

Fig. P6.7. Cable. 
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2 m 
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Fig.  P6.8. Cable.  

25 ft 25 ft 
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horizontal reactions at the supports, the minimum and maximum tension in the cable, and the total 
length of the cable.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

300 N/m 

3 m 
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C

Fig.  P6.9. Cable.  
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Chapter 7 

Deflection of Beams: Geometric Methods 
 
7.1 Introduction 
 
The serviceability requirements limit the maximum deflection that is allowed in a structural 
element subjected to external loading. Excessive deflection may result in the discomfort of the 
occupancy of a given structure and can also mar its aesthetics. Most codes and standards provide 
the maximum allowable deflection for dead loads and superimposed live loads. To ensure that the 
possible maximum deflection that could occur under a given loading is within acceptable value, 
the structural component is usually analyzed for deflection, and the determined maximum 
deflection value is compared with the specified values in the codes and standards of practice.  
There are several methods of determining the deflection of a beam or frame. The choice of a 
particular method is dependent on the nature of the loading and the type of problem being solved. 
Some of the methods used in this chapter include the method of double integration, the method of 
singularity function, the moment-area method, the unit-load method, the virtual work method, and 
the energy methods. 
 
7.2 Derivation of the Equation of the Elastic Curve of a Beam 
 
The elastic curve of a beam is the axis of a deflected beam, as indicated in Figure 7.1a. 
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Fig.  7.1. The elastic curve of a beam. 
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To derive the equation of the elastic curve of a beam, first derive the equation of bending. 
 
Consider the portion 𝑐𝑑𝑒𝑓 of the beam shown in Figure 7.1a, subjected to pure moment, 𝑀, for 
the derivation of the equation of bending. Due to the applied moment 𝑀, the fibers above the 
neutral axis of the beam will elongate, while those below the neutral axis will shorten. Let 𝑂 be 
the center and 𝑅 be the radius of the beam’s curvature, and let 𝑖𝑗 be the axis of the curved beam. 
The beam subtends an angle 𝜃 at 𝑂. And let 𝜎 be the longitudinal stress in a filament 𝑔ℎ at a 
distance 𝑦 from the neutral axis.  
 
From geometry, the length of the neutral axis of the beam 𝑖𝑗 and that of the filament 𝑔ℎ, located 
at a distance 𝑦 from the neutral axis of the beam, can be computed as follows: 
 
                            𝑖𝑗 ൌ  𝑅𝜃 and 𝑔ℎ ൌ  ሺ𝑅 ൅ 𝑦ሻ𝜃  
 
The strain 𝜀 in the filament can be computed as follows: 
 
                             𝜀 ൌ ೒೓ష೔ೕ

೔ೕ
 ൌ  ሺೃశ೤ሻഇషೃഇ

ೃഇ
 ൌ  ೤ഇ

ೃഇ
 ൌ  ೤

ೃ
                                                                        (7.1) 

 
For a linear elastic material, in which Hooke’s law applies, equation 7.1 can be written as follows: 
 
                             ഑

ಶ
 ൌ  ೤

ೃ
                                                                                                               (7.2) 

 
If an elementary area   𝛿𝐴 at a distance 𝑦 from the neutral axis of the beam (see Figure 7.1c) is 
subjected to a bending stress  𝜎, the elemental force on this area can be computed as follows: 
                                   
                           𝛿𝑃 ൌ  𝜎𝛿𝐴                                                                                                         (7.3) 
 
The force on the entire cross-section of the beam then becomes: 
 
                            𝑃 ൌ ׬  𝜎𝛿𝐴                                                                                                      (7.4) 
 
From static equilibrium consideration, the external moment 𝑀 in the beam is balanced by the 
moments about the neutral axis of the internal forces developed at a section of the beam. Thus,  
 
     𝑀 ൌ  ሺ𝜎𝛿𝐴ሻ𝑦                                                                                                 (7.5)׬
 
Substituting 𝜎 ൌ  ಶ೤

ೃ
 from equation 7.2 into equation 7.5 suggests the following:  

 
     𝑀 ൌ ൫ಶ׬ 

ೃ
൯ሺ𝑦ሻሺ𝑦ሻሺ𝛿𝐴ሻ 

                                ൌ  ൫ಶ
ೃ
൯ ׬ 𝑦ଶ𝛿𝐴                                                                                              (7.6) 

 
Putting 𝐼 ൌ ׬  𝑦ଶ𝛿𝐴 into equation 7.6 suggests the following: 
 
                          𝑀  ൌ  ಶ಺

ೃ
                                                                                                           (7.7) 

 



where 
 
𝐼 ൌ  the moment of inertia or the second moment of area of the section. 
 
Combining equations 7.2 and 7.7 suggests the following:  
 
                                                                                                                                                    (7.8)                    
    
 
The equation of the elastic curve of a beam can be found using the following methods. 
 
From differential calculus, the curvature at any point along a curve can be expressed as follows: 

                                  
ଵ

ோ
 ൌ  

೏మ೤
೏ೣమ

൤ଵାቀ೏೤
೏ೣ

ቁ
మ

൨

య
మൗ
                                                                             (7.9) 

where 
 

 
ௗ௬

ௗ௫
 and 

ௗమ௬

ௗ௫మ are the first and second derivative of the function representing the curve in terms of 

the Cartesian coordinates x and y. 
 
Since the beam in Figure 7.1 is assumed to be homogeneous and behaves in a linear elastic manner, 

its deflection under bending is small. Therefore, the quantity 
ௗ௬

ௗ௫
, which represents the slope of the 

curve at any point of the deformed beam, will also be small. Since ൫೏೤
೏ೣ

൯
ଶ
 is negligibly insignificant, 

equation 7.9 could be simplified as follows:   
 

                             
ଵ

ோ
 ൌ  

೏మ೤
೏ೣమ

ሾଵା଴ሿ
య

మൗ
 ൌ  ௗమ௬

ௗ௫మ                                                                                         (7.10)  

                                                                                             

Combining equations 7.2 and 7.10 suggests the following:  

 

                                
ଵ

ோ
ൌ ெ

ாூ
ൌ ೏మ೤

೏ೣమ                                         (7.11) 

 

Rearranging equation 7.11 yields the following:  

 

                                                    (7.12) 

 

ಾ
಺

 ൌ ಶ
ೃ
  

EI 
ௗమ௬

ௗ௫మ ൌ 𝑀 



 
Equation 7.12 is referred to as the differential equation of the elastic curve of a beam. 
 
7.3 Deflection by Method of Double Integration 
 
Deflection by double integration is also referred to as deflection by the method of direct or constant 
integration. This method entails obtaining the deflection of a beam by integrating the differential 
equation of the elastic curve of a beam twice and using boundary conditions to determine the 
constants of integration. The first integration yields the slope, and the second integration gives the 
deflection. This method is best when there is a continuity in the applied loading.  
 

 Example 7.1 

A cantilever beam is subjected to a combination of loading, as shown in Figure 7.2a. Using the 
method of double integration, determine the slope and the deflection at the free end. 
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Fig.  7.2. Cantilever beam. 
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Solution 
 
Equation for bending moment. Passing a section at a distance 𝑥 from the free-end of the beam, as 
shown in the free-body diagram in Figure 7.2b, and considering the moment to the right of the 
section suggests the following: 
 

𝑀 ൌ  5 െ మబೣమ

మ
                                                                                                                                (1) 



Substituting M into equation 7.12 suggests the following:  

𝐸𝐼೏మ೤
೏ೣమ  ൌ  5 െ మబೣమ

మ
                                                                                                                          (2)                     

Equation for slope. Integrating with respect to 𝑥 suggests the following: 

𝐸𝐼೏೤
೏ೣ

ൌ 5𝑥 െ మబೣయ

ల
൅ 𝐶ଵ                                                                                                                   (3)                         

Observe that at the fixed end where 𝑥 ൌ  𝐿, ೏೤
೏ೣ

 ൌ  0; this is referred to as the boundary 
condition. Applying these boundary conditions to equation 3 suggests the following: 
 

0 ൌ  5𝐿 െ ଶ଴୐య

଺
൅ 𝐶ଵ 

𝐶ଵ  ൌ  െ5 ൈ 5 ൅ ଶ଴ሺହሻయ

଺
 ൌ  391.67 

To obtain the following equation of slope, substitute the computed value of 𝐶ଵ into equation 3 
follows: 

𝐸𝐼೏೤
೏ೣ

 ൌ  5𝑥 െ మబೣయ

ల
൅ 391.67                                                                                                        (4)         

Equation for deflection. Integrating equation 4 suggests the following: 

𝐸𝐼𝑦 ൌ  ఱೣమ

మ
െ మబೣర

మర
൅ 391.67𝑥 ൅ 𝐶ଶ                                                                                              (5)                          

At the fixed end 𝑥 ൌ  𝐿,  𝑦 ൌ  0. Applying these boundary conditions to equation 5 suggests the 
following:  

0 ൌ  ହሺ௅ሻమ

ଶ
െ ଶ଴ሺ௅ሻర

ଶସ
൅ 391.67𝐿 ൌ  ହሺହሻమ

ଶ
െ ଶ଴ሺହሻర

ଶସ
൅ 391.67ሺ5ሻ ൅ 𝐶ଶ  ൌ  െ1500 

To obtain the following equation of elastic curve, substitute the computed value of 𝐶ଶ into 
equation 5, as follows: 

𝑦 ൌ  భ
ಶ಺

൫ఱೣమ

మ
െ మబೣర

మర
൅ 391.67𝑥 െ 1500൯                                                                                      (6)                           

The slope at the free end, i.e., ೏೤
೏ೣ

  at 𝑥 ൌ  0 

൫೏೤
೏ೣ

൯
୅

 ൌ  θ୅  ൌ  భ
ಶ಺

ൣ5ሺ0ሻ െ మబሺబሻయ

ల
൅ 391.6൧  ൌ  యవభ.లళ

ಶ಺
                    యవభ.లళ

ಶ಺
                   

The deflection at the free end, i.e., y at 𝑥 ൌ  0 

𝑦୅ ൌ భ
ಶ಺

൫ఱሺబሻమ

మ
െ మబሺబሻర

మర
൅ 391.67ሺ0ሻ െ 1500൯  ൌ  െ భఱబబ

ಶ಺
             భఱబబ

ಶ಺
↓     

 



 

 Example 7.2 

A simply supported beam 𝐴𝐵 carries a uniformly distributed load of 2 kips/ft over its length and a 
concentrated load of 10 kips in the middle of its span, as shown in Figure 7.3a. Using the method 
of double integration, determine the slope at support 𝐴 and the deflection at a midpoint C of the 
beam.  
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Fig.  7.3. Simply supported beam. 
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Solution 
 
Support reactions. 
 
𝐴௬ ൌ 𝐵௬ ൌ మൈఴ

మ
൅ భబ

మ
 ൌ  13 kips by symmetry 

Equation for bending moment. The moment at a section of a distance 𝑥 from support 𝐴, as shown 
in the free-body diagram in Figure 7.3b, is written as follows: 

0 ൏ 𝑥 ൏ 4 

𝑀 ൌ  13𝑥 െ మೣమ

మ
                                                                                                                          (1)  

Substituting for M into equation 7.12 suggests the following: 



𝐸𝐼೏మ೤
೏ೣమ  ൌ  𝑀 ൌ  13𝑥 െ మೣమ

మ
                                                                                                          (2)  

Equation for slope. Integrating equation 2 with respect to 𝑥 suggests the following: 

𝐸𝐼೏೤
೏ೣ

 ൌ  భయೣమ

మ
െ మೣయ

ల
൅ 𝐶ଵ                                                                                                              (3)                            

The constant of integration 𝐶ଵ is evaluated by considering the boundary condition. 

At 𝑥 ൌ  ಽ
మ
, ೏೤

೏ೣ
 ൌ  0 

Applying the afore-stated boundary conditions to equation 3 suggests the following:  

0 ൌ  ଵଷሺସሻమ

ଶ
െ ଶሺସሻయ

଺
൅ 𝐶ଵ 

𝐶ଵ ൌ െ 82.67. 

Bringing the computed value of 𝐶ଵ back into equation 3 suggests the following:  

೏೤
೏ೣ

 ൌ భ
ಶ಺

൫భయೣమ

మ
െ మೣయ

ల
െ 82.67൯                                                                                                          (4)                         

Equation for deflection. Integrating equation 4 suggests the following: 

𝐸𝐼𝑦 ൌ  భయೣయ

ల
െ మೣర

మర
െ 82.67𝑥 ൅ 𝐶ଶ                                                                                                 (5)                         

The constant of integration 𝐶ଶ is evaluated by considering the boundary condition. 

At 𝑥 ൌ  0, 𝑦 ൌ  0 

0 ൌ  0 െ 0 െ 0 ൅ 𝐶ଶ 

𝐶ଶ  ൌ  0 

Carrying the computed value of 𝐶ଶ back into equation 5 suggests the following equation of 
elastic curve: 

𝐸𝐼𝑦 ൌ  భయೣయ

ల
െ మೣర

మర
െ 82.67𝑥                                                                                                          (6)                         

The slope at 𝐴, i.e., ೏೤
೏ೣ

 at 𝑥 ൌ  0 

ቀௗ௬
ௗ௫

ቁ
୅

ൌ θ୅ ൌ ଵ
ாூ

ቀଵଷሺ଴ሻమ

ଶ
െ ଶሺ଴ሻయ

଺
െ 82.67ቁ  ൌ  െ ଼ଶ.଺଻

ாூ
  ୀ  ି

ఴమ.లళ

ሺభబ,బబబሻሺభమሻమ൬
భబబబ
ሺభమሻర൰

 

                                ൌ  െ0.0012 rad                  

 



Deflection at midpoint C, i.e., at 𝑥 ൌ ై
మ
 

𝑦௖ ൌ భ
ಶ಺

ൣభయሺరሻయ

ల
െ మሺరሻర

మర
െ 82.67ሺ4ሻ൧  ൌ  െ మభయ.యఱ

ಶ಺
 ൌ  െ మభయ.యఱ

ሺభబ,బబబሻሺభరరሻሺభబబబሻ൫భమషర൯
        

      ൌ  െ0.0031ft ൌ  െ0.04 in ↓     

 

 

 Example 7.3 

A beam carries a distributed load that varies from zero at support 𝐴 to 50 kN/m at its overhanging 
end, as shown in Figure 7.4a. Write the equation of the elastic curve for segment 𝐴𝐵 of the beam, 
determine the slope at support 𝐴, and determine the deflection at a point of the beam located 3 m 
from support 𝐴. 
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Fig. 7.4. Beam. 
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𝐴௬ ൌ 22.22 kN 𝐵 ൌ 177.78 kN 
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ሺ𝑏ሻ

 
Solution 
 
Support reactions. To determine the reactions of the beam, apply the equations of equilibrium, as 
follows: 
 

൅↶ ෍ 𝑀஺ ൌ  0 



െ ቀଵ
ଶ
ቁ ሺ8ሻሺ50ሻ ቀଶ

ଷ
ቁ ሺ8ሻ ൅ 𝐵௬ሺ6ሻ  ൌ  0 

𝐵௬ ൌ  177.78 kN                                                                   𝐵௬ ൌ  177.78 ↑ 
൅ → ∑ 𝐹௫ ൌ  0    𝐴௫ ൌ  0                                                      𝐴௫ ൌ 0 
൅↑ ∑ 𝐹୷ ൌ  0  

177.78 ൅ 𝐴௬ െ ቀଵ
ଶ
ቁ ሺ8ሻሺ50ሻ  ൌ  0 

𝐴௬ ൌ  22.22 kN                                                                      𝐴௬ ൌ  22.225 kN ↑ 
 
Equation for bending moment. The moment at a section of a distance 𝑥 from support 𝐴, as shown 
in the free-body diagram in Figure 7.4b, is as follows: 

0 ൏ 𝑥 ൏ 6     

𝑀 ൌ  22.22𝑥 െ ൫భ
మ
൯ሺ𝑥ሻ൫ఱబೣ

ఴ
൯൫ೣ

య
൯  ൌ  22.22𝑥 െ మఱೣయ

మర
                                                                      (1) 

Substituting for M into equation 7.12 suggests the following: 

𝐸𝐼೏మ೤
೏ೣమ  ൌ  𝑀 ൌ  2.22𝑥 െ మఱೣయ

మర
                                                                                                        (2)                         

Equation for slope. Integrating equation 2 with respect to 𝑥 suggests the following: 

𝐸𝐼೏೤
೏ೣ

 ൌ  మమ.మమೣమ

మ
െ మఱೣర

రൈమర
൅ 𝐶ଵ                                                                                                            (3)                         

Equation for deflection. Integrating equation 3 suggests the equation of deflection, as follows:   

𝐸𝐼𝑦 ൌ  మమ.మమೣయ

ల
െ మఱೣఱ

ఱൈరൈమర
൅ 𝐶ଵ𝑥 ൅ 𝐶ଶ                                                                                              (4)                         

To evaluate the constants of integrations, apply the following boundary conditions to equation 4:  

At 𝑥 ൌ  0, 𝑦 ൌ  0 

0 ൌ  0 െ 0 ൅ 0 ൅ 𝐶ଶ 

𝐶ଶ ൌ  0 

At 𝑥 ൌ  6 m, 𝑦 ൌ  0 

0 ൌ  ଶଶ.ଶଶሺ଺ሻయ

଺
െ ଶହሺ଺ሻఱ

ହൈସൈଶସ
൅ 6𝐶ଵ 

𝐶ଵ ൌ  െ65.82 

Equation of elastic curve. 

The equation of elastic curve can now be determined by substituting 𝐶ଵ and 𝐶ଶ into equation 4. 



𝐸𝐼𝑦 ൌ  ଶଶ.ଶଶ௫య

଺
െ ଶହ௫ఱ

ହൈସൈଶସ
െ 65.82𝑥  

To obtain the equations of slope and deflection, substitute the computed value of 𝐶ଵ and 𝐶ଶ back 
into equations 3 and 4: 

Equation of slope. 

೏೤
೏ೣ

ൌ  భ
ಶ಺

൫మమ.మమೣమ

మ
െ మఱೣర

వల
െ 65.82൯                                                                                                  (5) 

Equation of deflection. 

𝑦 ൌ భ
ಶ಺

൫ మమ.మమೣయ

ల
െ మఱೣఱ

రఴబ
െ 65.82𝑥൯                                                                                                (6) 

The slope at 𝐴, i.e., ೏೤
೏ೣ

 at 𝑥 ൌ  0 

൫೏೤
೏ೣ

൯
୅

ൌ  θ୅  ൌ  െ లఱ.ఴమ
ಶ಺

  ୀ ି లఱ.ఴమ
మబబ൫భబల൯ሺవఱሻ൫భబషల൯

 స െ 0.0035 rad                   0.0035 rad                

Deflection at 𝑥 ൌ 3 m from support 𝐴. 

y௫ ൌ  3 m ൌ  െ భభబ.భయ
ಶ಺

 ൌ  െ0.0058 m ൌ  െ5.80 mm                               5.80 mm ↓     

 

 
7.4 Deflection by Method of Singularity Function 
 

In cases where a beam is subjected to a combination of distributed loads, concentrated loads, and 
moments, using the method of double integration to determine the deflections of such beams is 
really involving, since various segments of the beam are represented by several moment functions, 
and much computational efforts are required to find the constants of integration. Using the method 
of singularity function in such cases to determine deflections is comparatively easier and relatively 
quick. This method of analysis was first introduced by Macaulay in 1919, and it entails the use of 
one equation that contains a singularity or half-range function to describe the entire beam 
deflection curve. A singularity or half-range function is defined as follows: 
 
 

〈𝑥 െ 𝑎〉௡  ൌ  ൜
0 for ሺ𝑥 െ 𝑎ሻ ൏ 0 or 𝑥 ൏ 𝑎

ሺ𝑥 െ 𝑎ሻ௡ for 𝑥 െ 𝑎 ൒ 0 or 𝑥 ൒ 𝑎
  

where 
 
x  = coordinate position of a point along the beam. 
a = any location along the beam where discontinuity due to bending occurs.  
n = the exponential values of the functions; this must always be greater than or equal to zero for       
      the functions to be valid.  



 

The above outlined definition implies that the quantity ሺ𝑥 െ 𝑎ሻ equals zero or vanishes if it is 
negative, but it is equal to ሺ𝑥 െ 𝑎ሻ if it is positive. 

 

 

 

 

 

 

 

 

 

 

 

 

 Example 7.4 

A simply supported beam is subjected to the combined loading shown in Figure 7.5a. Using the 
method of singularity function, determine the slope at support 𝐴 and the deflection at 𝐵. 

 

 

 

 

 

 

 

 

2 m 

𝐴 
𝐵 

4.5 m 

10 kN 

1.5 m 

𝐶 
𝐷

26 kN/m 

Fig. 7.5. Simply supported beam. 
ሺ𝑎ሻ 

• Sketch the free-body diagram of the beam and establish the 𝑥 and 𝑦 
coordinates. 

• Calculate the support reactions and write the moment equation as a 
function of the 𝑥 coordinate. The sign convention for the moment is 
the same as in section 4.3. 

• Substitute the moment expression into the equation of the elastic 
curve and integrate once to obtain the slope. Integrate again to obtain 
the deflection in the beam. 

• Using the boundary conditions, determine the integration constants 
and substitute them into the equations obtained in step 3 to obtain the 
slope and the deflection of the beam. A positive slope is 
counterclockwise and a negative slope is clockwise, while a positive 
deflection is upward and a negative deflection is downward. 

• When computing the slope or deflection at any point on the beam, 
discard the quantity ሺ𝑥 െ 𝑎ሻ from the equation for slope or deflection 
if it is negative. If  ሺ𝑥 െ 𝑎ሻ is positive, it remains in the equation. 

Procedure for Analysis by Singularity Function Method 



 

 

 

 

 

 
 

2 m 

𝐴 

6 m 

10 kN 

4.5 m 

𝐶

𝐷

26 kN/m 

𝐵
x 

y 

𝑥 

𝐴௬ ൌ86.60 kN 26 kN/m 𝐷 

ሺ𝑏ሻ 
Solution 
 
Support reactions. To determine the reaction at support 𝐴 of the beam, apply the equations of 
equilibrium, as follows:  
 

൅↶ ෍ 𝑀஽ ൌ  0 

26ሺ4.5ሻ ቀ8 െ ସ.ହ
ଶ

ቁ ൅ 10ሺ2ሻ െ 8𝐴௬ ൌ  0 

𝐴௬ ൌ  86.6 kN 

Bending moment. Replacing the given distributed load by two equivalent open-ended loadings, as 
shown in Figure 7.5b, the bending moment at a section located at a distance 𝑥 from the left support 
𝐴 can be expressed as follows: 

    𝑀 ൌ  86.6𝑥 െ మలೣమ

మ
൅ మల〈ೣషర.ఱ〉మ

మ
െ 10〈𝑥 െ 6〉                                                                            (1) 

Equation of the elastic curve. Substituting for 𝑀ሺ𝑥ሻ from equation 1 into equation 7.12 suggests 
the following:  

𝐸𝐼೏మ೤
೏ೣమ ൌ  𝑀 ൌ  86.6𝑥 െ మలೣమ

మ
൅ మల〈ೣషర.ఱ〉మ

మ
െ 10〈𝑥 െ 6〉ଵ                                                                 (2) 

Integrating equation 2 twice suggests the following:  

𝐸𝐼೏೤
೏ೣ

ൌ  ఴల.లೣమ

మ
െ మలೣయ

యൈమ
൅ మల〈ೣషర.ఱ〉య

యൈమ
െ భబ〈ೣషల〉మ

మ
൅ 𝐶ଵ                                                                              (3) 

𝐸𝐼𝑦 ൌ  ఴల.లೣయ

యൈమ
െ మలೣర

రൈయൈమ
൅ ଶ଺〈௫ିସ.ହ〉ర

ସൈଷൈଶ
െ  ଵ଴〈௫ି଺〉య

ଷൈଶ
 ൅  𝐶ଵ𝑥 ൅ 𝐶ଶ                                                           (4) 

Boundary conditions and computation of constants of integration. Applying the boundary 
conditions [x = 0, y = 0] to equation 4 and noting that each bracket contains a negative quantity 
and, thus, is equal zero by the singularity definition suggests that 𝐶ଶ ൌ  0. 

0 ൌ  0 െ 0 ൅ 0 െ 0 ൅ 𝐶ଶ 



𝐶ଶ ൌ  0 

Again, applying the boundary conditions [x = 8, y = 0] to equation 4 and noting that each bracket 
contains a positive quantity suggests that the value of the constant 𝐶ଵ is as follows: 

0 ൌ  ଼଺.଺ሺ଼ሻయ

ଷൈଶ
െ ଶ଺ሺ଼ሻర

ସൈଷൈଶ
൅

26ሺ8 െ 4.5ሻସ

4 ൈ 3 ൈ 2
െ 

10ሺ8 െ 6ሻଷ

3 ൈ 2
 ൅  8𝐶ଵ 

𝐶ଵ ൌ  െ387.72 

Substituting the values for 𝐶ଵ and 𝐶ଶ into equation 4 suggets that the expression for the elastic 
curve of the beam is as follows: 

𝑦 ൌ  భ
ಶ಺

ቄఴల.లೣయ

ల
െ మలೣర

మర
൅ ଶ଺〈௫ିସ.ହ〉ర

ଶସ
െ  ଵ଴〈௫ି଺〉య

଺
 െ 387.72𝑥ቅ                                                            (5) 

Similarly, substituting the values for 𝐶ଵ into equation 3 suggests the expression for the slope is as 
follows: 

೏೤
೏ೣ

ൌ  భ
ಶ಺

൛ఴల.లೣమ

మ
െ మలೣయ

ల
൅ మల〈ೣషర.ఱ〉య

ల
െ భబ〈ೣషల〉మ

మ
െ 387.72ൟ                                                                    (6) 

The slope at 𝐴, i.e., ೏೤
೏ೣ

  at 𝑥 ൌ  0 

൫೏೤
೏ೣ

൯
୅

ൌ θ୅ ൌ െ యఴళ.ళమ
ಶ಺

                                                        యఴళ.ళమ
ಶ಺

                  

The deflection at 𝑥 ൌ 4.5 m from support 𝐴 

𝑦௫  ൌ  4.5 m ൌ  ଵ
ாூ

ቊ଼଺.଺ሺସ.ହሻయ

଺
െ ଶ଺ሺସ.ହሻర

ଶସ
൅

26〈4.5 െ 4.5〉ସ

24
െ  

10〈4.5 െ 6〉ଷ

6
 െ 387.72ሺ4.5ሻቋ 

y௫ ൌ  4.5 m ൌ  െ ఴళయ.ళర
ಶ಺

                                                               ఴళయ.ళర
ಶ಺

↓   

 

 
 

Example 7.5 

A cantilever beam is loaded with a uniformly distributed load of 4 kips/ft, as shown in Figure 
7.6a. Using the method of singularity function, determine the equation of the elastic curve of the 
beam, the slope at the free end, and the deflection at the free end. 
 

 

 

 

𝑦 

𝐴 

4kips/ft 

𝐵

6 ft 6 ft 

𝐶 
𝑥 

𝐸𝐼 ൌ constant

Fig.  7.6. Cantilever beam. 
ሺ𝑎ሻ 



 

 

 

 

 

4kips/ft

𝐵 
𝐶 

𝑀஺ 

𝐴௬ 

FBD 

ሺ𝑏ሻ

Solution 
 
Support reactions. To determine the reaction at support 𝐴 of the beam, apply the equation of 
equilibrium, as follows:  
 

൅↶ ∑ 𝑀஺ ൌ  0           𝑀஺ െ 4ሺ6ሻሺ9ሻ  ൌ  0                               𝑀஺ ൌ  216 k-ft. ↶ 

൅↑ ∑ 𝐹௬ ൌ  0             𝐴௬ െ 4ሺ6ሻ  ൌ  0                                      𝐴௬ ൌ  24 k ↑ 

൅ → ∑ 𝐹௫ ൌ  0           𝐴௫ ൌ  0                                                         𝐴௫ ൌ  0 
 

Bending moment. The bending moment at a section located at a distance 𝑥 from the fixed end of 
the beam, shown in Figure 7.6b, can be expressed as follows: 

                      𝑀 ൌ  24𝑥 െ 216 െ ర〈ೣషల〉మ

మ
                                                                                    (1) 

Equation of the elastic curve. Substituting for 𝑀ሺ𝑥ሻ from equation 1 into equation 7.12 suggests 
the following:      

𝐸𝐼೏మ೤
೏ೣమ ൌ  𝑀 ൌ  24𝑥 െ 216 െ ర〈ೣషల〉మ

మ
                                                                                            (2) 

Integrating equation 2 twice suggests the following:  

𝐸𝐼೏೤
೏ೣ  ൌ  మరሺೣሻమ

మ
െ 216𝑥 െ ర〈ೣషల〉య

ల
൅ 𝐶ଵ                                                                                            (3) 

𝐸𝐼𝑦 ൌ  మరሺೣሻయ

ల
െ మభలሺೣሻమ

మ
ିర〈ೣషల〉ర

మర ൅ 𝐶ଵ𝑥 ൅ 𝐶ଶ                                                                                     (4) 

Boundary conditions and computation of constants of integration. Applying the boundary 

conditions [x = 0, 
ௗ௬

ௗ௫
 = 0] to equation 3 and noting that the term with a bracket contains a 

negative quantity and, thus, is equal to zero by the singularity function definition suggests that 
𝐶ଵ ൌ  0. 
                 మరሺబሻమ

మ
െ 216ሺ0ሻ െ ర〈బషల〉య

ల
൅ 𝐶ଵ ൌ  0           𝐶ଵ ൌ  0 



Applying the boundary conditions [x = 0, y = 0] to equation 4 and noting that the term with a 
bracket contains a negative quantity and, thus, is equal to zero by the singularity function 
definition suggests that 𝐶ଶ ൌ  0. 

  మరሺబሻయ

ల
െ మభలሺబሻమ

మ
ିర〈బషల〉ర

మర ൅ 𝐶ଵሺ0ሻ ൅ 𝐶ଶ ൌ  0             𝐶ଶ ൌ  0 

To find the elastic curve of the beam, substitute the values for 𝐶ଵ and 𝐶ଶ into equation 4, as 
follows:  

𝑦 ൌ భ
ಶ಺

ൣమరሺೣሻయ

ల
െ మభలሺೣሻమ

మ
ିర〈ೣషల〉ర

మర ൧                                                                                                         (5) 

Similarly, to find the expression for the slope, substitute the values for 𝐶ଵ into equation 3, as 
follows: 

೏೤
೏ೣ ൌ భ

ಶ಺
ൣమరሺೣሻమ

మ
െ 216𝑥 െ ర〈ೣషల〉య

ల
൧                                                                                                      (6) 

 

൫೏೤
೏ೣ

൯
஼

ൌ θେ ൌ భ
ಶ಺

ൣమరሺభమሻమ

మ
െ 216ሺ12ሻ െ ర〈భమషల〉య

ల
൧ ൌ െ భబబఴ

ಶ಺
                భబబఴ

ಶ಺
              

 

𝑦஼ ൌ భ
ಶ಺

ൣమరሺభమሻయ

ల
െ మభలሺభమሻమ

మ
ିర〈భమషల〉ర

మర ൧  ൌ  షఴఴఱల
ಶ಺

                                       ఴఴఱల
ಶ಺

↓   

 

 

 

 
Example 7.6 

A beam with an overhang is subjected to a combined loading, as shown in Figure 7.7a. Using the 
method of the singularity function, determine the slope at support 𝐴 and the deflection at 𝐵. 
 

 

 

 

 

 

 

 

3 m 

𝐴 
𝐵

2 m 

120 kN/m 

4 m 

𝐶
𝐸

40 kN. m 

2 m 

50 kN 

𝐷

Fig.  7.7. Beam with overhang. 
ሺ𝑎ሻ



 

 

 

 

 
 
 
 

 
Support reactions. To determine the reaction at support 𝐴 of the beam, apply the equations of 
equilibrium, as follows:  
 

൅↶ ෍ 𝑀஺ ൌ  0 

െ40 െ 120ሺ4ሻሺ6ሻ െ 50ሺ11ሻ ൅ 8𝐷௬ ൌ  0 

𝐷௬ ൌ  433.75 kN                                                                                        𝐷௬ ൌ  433.75 kN ↑ 

൅↑ ෍ 𝐹௬ ൌ  0 

𝐴௬ ൅ 433.75 െ 120ሺ4ሻ െ 50 ൌ  0 

𝐴௬ ൌ  96.25 kN                                                                                          𝐴௬ ൌ  96.25 kN ↑ 

൅ → ∑ 𝐹௫ ൌ  0    𝐴௫ ൌ  0                                                                                     𝐴௫ ൌ  0 
 

Bending moment. By replacing the given distributed load by two equivalent open-ended loadings 
and modifying the moment term, as shown in Figure 7.7b, the bending moment at a section located 
at a distance 𝑥 from the left support 𝐴 can be expressed as follows: 

𝑀 ൌ  96.25𝑥 ൅ 40〈𝑥 െ 2〉଴ െ భమబ〈ೣషర〉మ

మ
൅ ଵଶ଴ሺ௫ି଼ሻమ

ଶ
൅ 433.75〈𝑥 െ 8〉                                       (1) 

Equation of the elastic curve. Substituting for 𝑀ሺ𝑥ሻ from equation 1 into equation 7.12 suggests 
the following:   

𝐸𝐼೏మ೤
೏ೣమ  ൌ  𝑀 ൌ  96.25𝑥 ൅ 40〈𝑥 െ 2〉଴ െ భమబ〈ೣషర〉మ

మ
൅ ଵଶ଴〈௫ି଼〉మ

ଶ
൅ 433.75〈𝑥 െ 8〉                        (2) 

Integrating equation 2 twice suggests the following:  

3 m 

𝐴 
𝐵

2 m 

120 kN/m 

4 m 

𝐶 𝐸
40 kN. m 

2 m 

50 kN 

𝐷௬ ൌ 433.75 kN 
𝑥

y 

x 

𝐴௬ ൌ 96.25 kN 

ሺ𝑏ሻ 

Solution 



𝐸𝐼೏೤
೏ೣ

 ൌ  వల.మఱೣమ

మ
൅ 40〈𝑥 െ 2〉ଵ െ భమబ〈ೣషర〉య

యൈమ
൅ భమబ〈ೣషఴ〉య

యൈమ
൅ ସଷଷ.଻ହ〈௫ି଼〉మ

ଶ
൅ 𝐶ଵ                                       (3) 

𝐸𝐼𝑦 ൌ  వల.మఱೣయ

యൈమ
൅ రబ〈ೣషమ〉మ

మ
െ ଵଶ଴〈௫ିସ〉ర

ସൈଷൈଶ
൅  ଵଶ଴〈௫ି଼〉ర

ସൈଷൈଶ
 ൅ ସଷଷ.଻ହ〈௫ି଼〉య

ଷൈଶ
 ൅ 𝐶ଵ𝑥 ൅ 𝐶ଶ                              (4) 

Boundary conditions and computation of constants of integration. Applying the boundary 
conditions [x = 0, y = 0] to equation 4 and noting that each bracket contains a negative quantity 
and, thus, is equal to zero by the singularity definition suggests that 𝐶ଶ ൌ  0. 

0 ൌ  0 ൅ 0 െ 0 ൅ 0 ൅ 0 ൅ 0 ൅ 𝐶ଶ 

𝐶ଶ ൌ  0 

Again, applying the boundary conditions [x = 8m, y = 0] to equation 4 and noting that each 
bracket contains a positive quantity suggests that the value of the constant 𝐶ଵ is as follows: 

0 ൌ  ଽ଺.ଶହሺ଼ሻయ

ଷൈଶ
൅ ସ଴〈଼ିଶ〉మ

ଶ
െ

120〈8 െ 4〉ସ

4 ൈ 3 ൈ 2
൅  

120〈8 െ 8〉ସ

4 ൈ 3 ൈ 2
 ൅

433.75〈8 െ 8〉ଷ

3 ൈ 2
 ൅ 8𝐶ଵ 

𝐶ଵ ൌ  െ956.67 

Substituting the values for 𝐶ଵ and 𝐶ଶ into equation 4 suggests that the expression for the elastic 
curve of the beam is as follows: 

𝑦 ൌ ଵ
ாூ

ቊଽ଺.ଶହ௫య

ଷൈଶ
൅ ସ଴〈௫ିଶ〉మ

ଶ
െ

120〈𝑥 െ 4〉ସ

4 ൈ 3 ൈ 2
൅  

120〈𝑥 െ 8〉ସ

4 ൈ 3 ൈ 2
 ൅

433.75〈𝑥 െ 8〉ଷ

3 ൈ 2
െ 956.67𝑥ቋ 

Similarly, substituting the values for 𝐶ଵ into equation 3 suggests that the expression for the slope 
is as follows: 

ௗ௬
ௗ௫

 ൌ  ଵ
ாூ

ቊଽ଺.ଶହ௫మ

ଶ
൅ 40〈𝑥 െ 2〉ଵ െ ଵଶ଴〈௫ିସ〉య

ଷൈଶ
൅ ଵଶ଴〈௫ି଼〉య

ଷൈଶ
൅

433.75〈𝑥 െ 8〉ଶ

2
െ 956.67ቋ 

The slope at 𝐴, i.e., ೏೤
೏ೣ

  at 𝑥 ൌ  0 

                        ൫೏೤
೏ೣ

൯
୅

ൌ θ୅ ൌ െ వఱల.లళ
ಶ಺

                               వఱల.లళ
ు౅

                

The deflection at 𝑥 ൌ 2 m from support 𝐴 

                       𝑦௫ ൌ  2 m ൌ భ
ಶ಺

൛ వల.మఱሺమሻయ

ల
൅ 0 െ 0 ൅ 0  ൅ 0 െ 956.67ሺ2ሻൟ 

                       y௫ ൌ  2 m ൌ  െ భళఴఱ
ు౅

                                             భళఴఱ
ಶ಺

↓   

 



7.5 Deflection by Moment-Area Method 
 
The moment-area method uses the area of moment divided by the flexural rigidity (M/EI) diagram 
of a beam to determine the deflection and slope along the beam. There are two theorems used in 
this method, which are derived below. 
 
7.5.1 First Moment-Area Theorem 

To derive the first moment-area theorem, consider a portion AB of an elastic curve of the deflected 
beam shown in Figure 7.8b. The beam has a radius of curvature R. Figure 7.8c represents the 
bending moment of this portion. According to geometry, the length of the arc ds, of the radius R, 
subtending an angle dθ, is equal to the product of the radius of curvature and the angle subtend. 
Therefore, 

𝑑𝑠 ൌ  𝑅𝑑𝜃                           (7.13) 

Rearranging equation 1 suggests the following:  

ௗఏ

ௗ௦
 ൌ  ଵ

ோ
                                                                                                        

𝐴 
𝛿𝑦

𝐵 𝑅

𝑦 

𝜃

𝑑𝑠

𝑑𝜃

𝜃

𝑑𝜃

𝑡𝑎𝑛𝑔𝑒𝑛𝑡 𝑎𝑡 𝐵
𝑑𝑥

𝑥 𝑑𝑥  

𝐴 𝐵
𝑀

𝐸𝐼
 

𝐴 𝐵 

𝑤

𝑥 𝑑𝑥  

Fig.  7.8. Deflected beam. 

ሺ𝑎ሻ 

ሺ𝑏ሻ 

ሺ𝑐ሻ 

                              (7.14) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Substituting equation 7.14 into equation 7.8 suggests the following:  

𝑑𝜃 ൌ  ெ

ாூ
𝑑𝑠                            (7.15) 

Since ds is infinitesimal because of the small lateral deflection of the beam that is allowed in 
engineering, it can be replaced by its horizontal projection dx. Thus,  

𝑑𝜃 ൌ  ெ

ாூ
𝑑𝑥                            (7.16) 

The angle θ between the tangents at A and B can thus be obtained by summing up the subtended 
angles by the infinitesimal length lying between these points. Thus,  

׬ 𝑑𝜃
஻

஺  ൌ ׬ 
ெ

ாூ
𝑑𝑥 

஻
஺   

Or 𝜃஻/஺  ൌ  𝜃஻ െ 𝜃஺  ൌ ׬  ಾ
ಶ಺ௗ௫

஻
஺                                                                                                    (7.17) 

Equation 7.17 is referred to as the first moment-area theorem. The first moment-area theorem 
states that the total change in slope between A and B is equal to the area of the bending moment 
diagram between these two points divided by the flexural rigidity 𝐸𝐼. 

7.5.2 Second Moment-Area Theorem 

Referring again to Figure 7.8, it is required to determine the tangential deviation of point B with 
respect to point A, which is the vertical distance of point B from the tangent drawn to the elastic 
curve at point A. To do so, first calculate the contribution 𝛿Δ of the element of length dL to the 
vertical distance. According to geometry,  

𝛿𝑦 ൌ  𝑥𝑑𝜃                            (7.18) 

Substituting dθ from equation 7.15 to equation 7.18 suggests the following:  

𝛿𝑦 ൌ  ெ௫

ாூ
𝑑𝑥                            (7.19) 

Hence,   

𝑦 ൌ ׬ 
ெ௫

ாூ
𝑑𝑥 

஻
஺                             (7.20) 

Equation 7.20 is referred to as the second moment area theorem. The second moment-area theorem 
states that the vertical distance of point B on an elastic curve from the tangent to the curve at point 
A is equal to the moment with respect to the vertical through B of the area of the bending moment 
diagram between A and B, divided by the flexural rigidity, EI. 
 
7.5.3 Sign Conventions 
 
The sign conventions for moment-area theorems are as follows: 



(1) The tangential deviation of a point B, with respect to a tangent drawn at the elastic curve 
at a point A, is positive if B lies above the drawn tangent at A and negative if it lies below 
the tangent (see Figure 7.9). 

(2) The slope at a point B, with respect to a tangent drawn at a point A in an elastic curve, is 
positive if the tangent drawn at B rotates in a counterclockwise direction with respect to 
the tangent at A and negative if it rotates in a clockwise direction (see Figure 7.9). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.  7.9. Sign convention representation. 

𝑦஻/஺ 

𝐴 

𝐵 

𝐵 

𝐴

𝑦஻/஺ 

ሺaሻ Positive change in slope, and 
positive deflection. 

ሺbሻ Negative change in slope, 
and negative deflection. 

• Sketch the free-body diagram of the beam. 
• Draw the M/EI diagram of the beam. This will look like the 

conventional bending moment diagram of the beam if the beam is 
prismatic (i.e. of the same cross section for its entire length). 

• To determine the slope at any point, find the angle between a tangent 
passing the point and a tangent passing through another point on the 
deflected curve, divide the M/EI diagram into simple geometric shapes, 
and then apply the first moment-area theorem. To determine the 
deflection or a tangential deviation of any point along the beam, apply 
the second moment-area theorem. 

• In cases where the configuration of the M/EI diagram is such that it 
cannot be divided into simple shapes with known areas and centroids, 
it is preferable to draw the M/EI diagram by parts. This entails 
introducing a fixed support at any convenient point along the beam and 
drawing the M/EI diagram for each of the applied loads, including the 
support reactions, prior to the application of any of the theorems to 
determine what is required. 

Procedure for Analysis by Moment-Area Method 



Table 7.1. Areas and centroids of geometric shapes. 
 
Geometric Shape Area Centroid 

𝐶ଵ 𝐶ଶ 
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𝑏 
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ℎ 

𝑏 
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 Example 7.7 

A cantilever beam shown in Figure 7.10a is subjected to a concentrated moment at its free end. 
Using the moment-area method, determine the slope at the free end of the beam and the deflection 
at the free end of the beam. EI = constant.   
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𝐴 𝐵
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Fig. 7.10. Cantilever beam. 
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diagram 
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curve 𝜃஺

∆஺ 
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𝐵

ሺ𝑐ሻ
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Solution 
 
ሺ𝑀/𝐸𝐼ሻ diagram. First, draw the bending moment diagram for the beam and divide it by the 
flexural rigidity, EI, to obtain the ಾ

ಶ಺
 diagram shown in Figure 7.10b. 

 
Slope at A. The slope at the free end is equal to the area of the ಾ

ಶ಺
 diagram between A and B, 

according to the first moment-area theorem. Using this theorem and referring to the ಾ
ಶ಺

 diagram 

suggests the following:  

θ஺ ൌ  െ൫ భ
ಶ಺

൯ሺ6ሻሺ20ሻ  ൌ  െభమబ
ಶ಺

                                                  θ஺ ൌ భమబ
ಶ಺

                  
 
Deflection at A. The deflection at the free end of the beam is equal to the moment with respect to 
the vertical through A of the area of the ಾ

ಶ಺
 diagram between A and B, according to the second 

moment-area theorem. Using this theorem and referring to Figure 7.10b and Figure 7.10c suggests 
the following:  



∆஺ൌ െ൫ భ
ಶ಺

൯ሺ6ሻሺ20ሻሺ3ሻ ൌ െయలబ
ಶ಺

                                                   ∆஺ ൌ యలబ
ಶ಺

↓     

 

 Example 7.8 

A propped cantilever beam carries a uniformly distributed load of 4 kips/ft over its entire length, 
as shown in Figure 7.11a. Using the moment-area method, determine the slope at A and the 
deflection at A. 
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Original beam 

ሺ𝑎ሻ

Fig. 7.11. Propped cantilever beam. 
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Solution 
 
ሺ𝑀/𝐸𝐼ሻ diagram. First, draw the bending moment diagram for the beam and divide it by the 
flexural rigidity, EI, to obtain the ಾ

ಶ಺
 diagram shown in Figure 7.11b. 

 
Slope at A. The slope at the free end is equal to the area of the ಾ

ಶ಺
 diagram between A and B. The 

area between these two points is indicated as 𝐴ଵ and 𝐴ଶ in Figure 7.11b. Use Table 7.1 to find the 
computation of 𝐴ଶ, whose arc is parabolic, and the location of its centroid. Noting from the table 
that 𝐴 ൌ భ

య
𝑏ℎ and applying the first moment-area theorem suggests the following:             

     θ஺ ൌ  𝐴ଵ െ 𝐴ଶ ൌ  ൫ భ
ಶ಺

൯൫భ
మ
൯ሺ10ሻሺ120ሻ െ ൫ భ

ಶ಺
൯൫భబൈమబబ

య
൯  ൌ  െలల.లళ

ಶ಺
        θ஺ ൌ లల.లళ

ಶ಺
                 

 
Deflection at A. The deflection at A is equal to the moment of area of the ಾ

ಶ಺
 diagram between A 

and B about A. Thus, using the second moment-area theorem and referring to Figure 7.11b and 
Figure 7.11c suggests the following: 
 
   ∆஺ൌ 𝐴ଵ൫ಽ

య
൯ െ 𝐴ଶ൫యಽ

ర
൯  ൌ  ൫ భ

ಶ಺
൯൫భ

మ
൯ሺ10ሻሺ120ሻ൫మൈభబ

య
൯ െ ൫ భ

ಶ಺
൯൫భబൈమబబ

య
൯൫యൈభబ

ర
൯  ൌ   െభబబబ

ಶ಺
     ∆஺ ൌ   భబబబ

ಶ಺
↓   

  

 

 Example 7.9 

A simply supported timber beam with a length of 8 ft will carry a distributed floor load of 500 lb/ 
ft over its entire length, as shown Figure 7.12a. Using the moment area theorem, determine the 
slope at end B and the maximum deflection. 
 

 

 

 

 

500 lb/ft 

𝐴 𝐵
8 ft 

Original beam 

ሺ𝑎ሻ 
Fig. 7.12. Simply supported timber beam. 
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ሺ𝑐ሻ 

Solution 
 
ሺ𝑀/𝐸𝐼ሻ diagram. First, draw the bending moment diagram for the beam, and divide it by the 
flexural rigidity, EI, to obtain the ಾ

ಶ಺
 diagram shown in Figure 7.12b. 

 
Slope at B. The slope at B is equal to the area of the ಾ

ಶ಺
 diagram between B and C. The area between 

these two points is indicated as 𝐴ଶ in Figure 7.12b. Applying the first moment-area theorem 
suggests the following:   

θ஻ ൌ 𝐴ଶ ൌ  ൫ భ
ಶ಺

൯൫మ್೓
య

൯  ൌ  ൫ భ
ಶ಺

൯൫మሺరሻሺరబబబሻ
య

൯  ൌ  భబలలల.లళ
ಶ಺

                  θ஻ ൌ భబలలల.లళ
ಶ಺

    
 
 
Maximum deflection. The maximum deflection occurs at the center of the beam (point C). It is 
equal to the moment of the area of the ಾ

ಶ಺
 diagram between B and C about B. Thus, 

 
        ∆௖ ൌ 𝐴ଶ൫ఱ್

ఴ
൯  ൌ  ൫ భ

ಶ಺
൯൫మሺరሻሺరబబబሻ

య
൯൫ఱሺరሻ

ఴ
൯  ൌ  మలలలల.లళ

ಶ಺
                ∆௖ ൌ  మలలలల.లళ

ಶ಺
↓    

 

 

 Example 7.10 

A prismatic timber beam is subjected to two concentrated loads of equal magnitude, as shown in 
Figure 7.13a. Using the moment-area method, determine the slope at A and the deflection at point 
C.   
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Fig. 7.13. Prismatic timber beam.
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ሺ𝑀/𝐸𝐼ሻ diagram. First, draw the bending moment diagram for the beam and divide it by the 
flexural rigidity, EI, to obtain the ಾ

ಶ಺
 diagram shown in Figure 7.13b. 

Slope at A. The deflection and the rotation of the beam are small since they occur within the elastic 
limit. Thus, the slope at support A can be computed using the small angle theorem, as follows: 

𝜃஺ ൌ  ∆ಳ/ಲ

௅
ൌ  ∆ಳ/ಲ

଺
 

To determine the tangential deviation of B from A, apply the second moment-area theorem. 
According to the theorem, it is equal to the moment of the area of the ಾ

ಶ಺
 diagram between A and B 

about B. Thus,  

∆஻/஺ൌ  𝐴ଵ ቀ1.5 ൅ 3 ൅ ଵ
ଷ

ൈ 1.5ቁ ൅ 𝐴ଶሺ1.5 ൅ 1.5ሻ ൅ 𝐴ଷ ቀଶ
ଷ

ൈ 1.5ቁ 

∆஻/஺ൌ  ଵ
ாூ

ቂଵ
ଶ
ሺ1.5ሻሺ6ሻ ቀଶ

ଷ
ൈ 1.5ቁ ൅ ሺ3ሻሺ6ሻሺ1.5 ൅ 1.5ሻ ൅ ଵ

ଶ
ሺ1.5ሻሺ6ሻ ቀ1.5 ൅ 3 ൅ ଵ

ଷ
ൈ 1.5ቁቃ 

∆஻/஺ൌ  ଼ଵ
ாூ

 

Thus, the slope at A is 

𝐴 𝐵

𝐶 

Elastic curve 

∆஻/஺

∆஼/஺ 

∆஼ 
𝜃஺ 

tangent at B 
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ሺ𝑐ሻ 

Solution 



𝜃஺ ൌ  ∆ಳ/ಲ
ಽ

ൌ ఴభ
లಶ಺

ൌ భయ.ఱ
ಶ಺

                                                    𝜃஺ ൌ  భయ.ఱ
ಶ಺

    

Deflection at C. The deflection at C can be obtained by proportion. 

∆ಳ/ಲ

଺
 ൌ  ∆೎ା∆಴/ಲ

ଵ.ହ
 

∆௖ ൌ  
ሺଵ.ହሻ൫∆ಳ/ಲ൯

଺
െ ∆஼/஺ 

Similarly, the tangential deviation of C from A can be determined as the moment of the area of 
the ಾ

ಶ಺
 diagram between A and C about C. 

∆஼/஺ ൌ  ଵ
ாூ

ቂଵ
ଶ
ሺ1.5ሻሺ6ሻ ቀଶ

ଷ
ൈ 1.5ቁቃ ൌ ଽ

ଶாூ
 

Therefore, the deflection at C is 

∆௖ ൌ  ሺభ.ఱሻሺఴభሻ
లಶ಺

െ వ
మಶ಺

 ൌ  ଵହ.଻ହ

ாூ
                                                 ∆௖ ൌ  ଵହ.଻ହ

ாூ
     

 

The conjugate beam method, developed by Heinrich Muller-Breslau in 1865, is one of the methods 
used to determine the slope and deflection of a beam. The method is based on the principle of 
statics. 
 
A conjugate beam is defined as a fictitious beam whose length is the same as that of the actual 
beam, but with a loading equal to the bending moment of the actual beam divided by its flexural 
rigidity, EI.   
 
The conjugate beam method takes advantage of the similarity of the relationship among load, shear 
force, and bending moment, as well as among curvature, slope, and deflection derived in previous 
chapters and presented in Table 7.2.  

 
Table 7.2. Relationship between load-shear-bending moment and curvature-slope-deflection. 
 
Load-shear-bending moment              Curvature-slope-deflection 
           𝑉ሺ𝑥ሻ  ൌ ׬  𝑤𝑑𝑥                                              𝜃ሺ𝑥ሻ ൌ ׬ ಾ

ಶ಺
𝑑𝑥 

 
          𝑀ሺ𝑥ሻ  ൌ ׬  𝑉𝑑𝑥                                     ∆ሺ𝑥ሻ  ൌ ׬  𝜃ሺ𝑥ሻ 𝑑𝑥  
 
or      𝑀ሺ𝑥ሻ  ൌ  ∬ 𝑤𝑑𝑥 𝑑𝑥                         or  ∆ሺ𝑥ሻ  ൌ  ∬ ಾ

ಶ಺
𝑑𝑥 𝑑𝑥 

 
 

   

7.6 Deflection by the Conjugate Beam Method  



7.6.1 Supports for Conjugate Beams 
The supports for conjugate beams are shown in Table 7.3 and the examples of real and conjugate 
beams are shown in Figure 7.4. 

Table 7.3. Supports for conjugate beams. 
 
Real Support Conjugate Support 
Pin or roller Slope and 

Deflection
Pin or roller 
 

Shear and 
Moment 

 
 
 
 
 
 
 
 

 
𝜃 ് 0 
∆ൌ 0 

  
V ് 0 
M ൌ 0 

 

Fixed  
 
 
 
 

 
 

𝜃 ൌ 0 
∆ൌ 0 

Free end 
 
 

 
 

V ൌ 0 
M ൌ 0 

Free end 
 
 
 
 

 
 

𝜃 ് 0 
∆് 0 

 
 

Fixed 
 

 
V ് 0 
M ് 0 

 
 
 
 

Interior pin or roller support 
 
 
 
 
 
 
 
 
 

 
𝜃 ് 0 
∆ ൌ 0 

Internal hinge 
 
 
 
 
 

 
 

V ് 0 
M ൌ 0 

 

Internal hinge 
 
 
 
 
 
 

𝜃 ് 0 
∆് 0 

Interior roller 
 

V ് 0 
M ് 0 

𝜃 

𝜃 

V V

V
M

𝜃𝐿 
𝜃𝑅 

𝜃𝐿 
𝜃𝑅 

V௅

Vோ 

V௅

Vோ 



 
Table 7.4 Real beams and their conjugate. 
 
Real Beam Conjugate Beam 
 
 
 
 
 

 

 
 
 
 
 

 

 
 
 
 
 

 

 
 
 
 
 

 

 
 
 
 
 

 

 
 
 
 
 

 

 
7.6.2 Sign Convention 
 
For a positive curvature diagram, where there is a positive ordinate of the ಾ

ಶ಺
 diagram, the load in 

the conjugate should point in the positive y direction (upward) and vice versa (see Figure 7.14).  
 

 

 

 

M 

𝑥
ሺ𝑎ሻ Real beam diagram for positive 

moment 

୑
୉୍

 

𝑥
ሺ𝑏ሻ Conjugate beam diagram for deflection 

and slope analysis 

Fig. 7.14. Positive curvature diagram.



 
 
If the convention stated for positive curvature diagrams is followed, then a positive shear force in 
the conjugate beam equals the positive slope in the real beam, and a positive moment in the 
conjugate beam equals a positive deflection (upward movement) of the real beam. This is shown 
in Figure 7.15. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

൅V ൅V 

Positive shear 
ሺ𝑎ሻ 

൅𝜃 ൌ ൅V 
𝑥 

Positive slope 
ሺ𝑏ሻ

൅M ൅M

Positive moment 

൅∆ൌ ൅M 

𝑥 

𝑦 

Positive deflection 

Fig.  7.15. Shear and slope in beam. 

ሺ𝑐ሻ ሺ𝑑ሻ

𝑦

• Draw the curvature diagram for the real beam. 
• Draw the conjugate beam for the real beam. The conjugate beam has 

the same length as the real beam. A rotation at any point in the real 
beam corresponds to a shear force at the same point in the conjugate 
beam, and a displacement at any point in the real beam corresponds to 
a moment in the conjugate beam. 

• Apply the curvature diagram of the real beam as a distributed load on 
the conjugate beam. 

• Using the equations of static equilibrium, determine the reactions at the 
supports of the conjugate beam. 

• Determine the shear force and moment at the sections of interest in the 
conjugate beam. These shear forces and moments are equal to the slope 
and deflection, respectively, in the real beam. Positive shear in the 
conjugate beam implies a counterclockwise slope in the real beam, 
while a positive moment denotes an upward deflection in the real beam. 

  
  

Procedure for Analysis by Conjugate Beam Method 



 
Example 7.11 

Using the conjugate beam method, determine the slope and the deflection at point A of the 
cantilever beam shown in the Figure 7.16a. 𝐸 ൌ  29,000 ksi and 𝐼 ൌ  280 in.ସ  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
ሺ𝑀/𝐸𝐼ሻ diagram. First, draw the bending moment diagram for the beam and divide it by the 
flexural rigidity, EI, to obtain the ಾ

ಶ಺
 diagram shown in Figure 7.16b. 

 
Conjugate beam. The conjugate beam loaded with the ಾ

ಶ಺
 diagram is shown in Figure 7.16c. Notice 

that the free end in the real beam becomes fixed in the conjugate beam, while the fixed end in the 
real beam becomes free in the conjugate beam. The ಾ

ಶ಺
 diagram is applied as a downward load in 

the conjugate beam because it is negative in Figure 7.16b. 

యల
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ు౅ ቁ   

యల
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𝐴 𝐵

12 ft 

𝐴 𝐵 

12 ft 

3 kips 

ሺ𝑎ሻ Real Beam 

Fig.  7.16. Conjugate beam. 

Solution 



Slope at A. The slope at A in the real beam is the shear at A in the conjugate beam. The shear at A 
in the conjugate is as follows: 

𝑉஺ ൌ  ቀଵ
ଶ
ቁ ሺ12ሻ ቀଷ଺

ாூ
ቁ  ൌ  ଶଵ଺ ୩ି୤୲మ

ாூ
 

The same sign convention for shear force used in Chapter 4 is used here. 

Thus, the slope in the real beam at point A is as follows: 

𝜃୅ ൌ  మభల ౡష౜౪మ

ಶ಺
ൌ  మభల ሺభమሻమ

ሺమవ,బబబሻሺమఴబሻ  ൌ  0.0038 rad                                     ൌ  0.0038 rad                   

Deflection at A. The deflection at A in the real beam equals the moment at A of the conjugate 
beam. The moment at A of the conjugate beam is as follows: 

𝑀஺  ൌ  െ ቀଵ
ଶ
ቁ ሺ12ሻ ቀଷ଺

ாூ
ቁ ቀଶ

ଷ
ൈ 12ቁ  ൌ  െ ଵ଻ଶ଼  ୩ି୤୲య

ாூ
 

The same sign convention for bending moment used in Chapter 4 is used here. 

Thus, the deflection in the real beam at point A is as follows: 

∆୅ൌ  െ భళమఴ ሺభమሻయ

ሺమవ,బబబሻሺమఴబሻ  ൌ  െ0.37 in                         ∆஺ െ 0.37 in ↓   

 

 Example 7.12 

Using the conjugate beam method, determine the slope at support A and the deflection under the 
concentrated load of the simply supported beam at B shown in Figure 7.17a. 
𝐸 ൌ 29,000 ksi  and 𝐼 ൌ 800 in.ସ 

 

 

 

 

 

 

 

 

 

ଵ଼଴
୉୍

 

ሺ𝑏ሻ 
୑
୉୍

diagram ቀ୩.୤୲
୉୍

ቁ 

𝐴
𝐵 

15 ft 

24 kips 

𝐶

15 ft 

ሺ𝑎ሻ Real Beam 

Fig.  7.17. Simply supported beam. 



 

 

 

 
 
 
 
 
 
 
 

 
ሺ𝑀/𝐸𝐼ሻ diagram. First, draw the bending moment diagram for the beam and divide it by the 
flexural rigidity, EI, to obtain the moment curvature (ಾ

ಶ಺
ሻ diagram shown in Figure 7.17b. 

 
Conjugate beam. The conjugate beam loaded with the ಾ

ಶ಺
 diagram is shown in Figure 7.17c. Notice 

that A and C, which are simple supports in the real beam, remain the same in the conjugate beam. 
The ಾ

ಶ಺
 diagram is applied as an upward load in the conjugate beam because it is positive in Figure 

7.17b. 
 
Reactions for conjugate beam. The reaction at supports of the conjugate beam can be determined 
as follows:  
 
𝐴௬ ൌ  𝐵௬ ൌ  െ భ

ಶ಺
൫భ

మ
൯ሺ30ሻሺ180ሻሺ0.5ሻ  ൌ  െ భయఱబ ౡ .  ౜౪మ

ಶ಺
  due to symmetry in loading 

Slope at A. The slope at A in the real beam is the shear force at A in the conjugate beam. The 
shear at A in the conjugate beam is as follows: 

𝑉஺ ൌ  െଵଷହ଴ ୩ .  ୤୲మ

ாூ
 

Thus, the slope at support A of the real beam is as follows: 

𝜃஺ ൌ  െభయఱబ ౡ .  ౜౪మ

ಶ಺
 ൌ  െ భయఱబሺభమሻమ 

ሺమవ,బబబሻሺఴబబሻ ൌ  െ0.0084 rad                           𝜃஺  ൌ  0.0084 rad                   

Deflection at B. The deflection at B in the real beam equals the moment at B of the conjugate 
beam. The moment at B of the conjugate beam is as follows: 

𝑀஻ ൌ  ଵ
ாூ

ቂെሺ1350ሻሺ15ሻ ൅ ቀଵ
ଶ
ቁ ሺ15ሻሺ180ሻ ቀଵହ

ଷ
ቁቃ  ൌ  െ ଵଷହ଴଴ ୩ .  ୤୲య

ாூ
 

𝐴 
𝐵

15 ft 

𝐶 

15 ft 

ሺ𝑐ሻ Conjugate 
Beam

ଵ଼଴
୉୍

 

Solution 



The deflection at B of the real beam is as follows: 

∆஻ ൌ  െ యయళఱబ ౡ .  ౜౪య

ಶ಺
 ൌ  െ భయఱబబ ሺభమሻయ

ሺమవ,బబబሻሺఴబబሻ ୀ െ 1.01 in.                           ∆஻  ൌ  1.01 in. ↓      

 

 Chapter Summary 

Deflection of beams through geometric methods: The geometric methods considered in this 
chapter includes the double integration method, singularity function method, moment-area 
method, and conjugate-beam method. Prior to discussion of these methods, the following equation 
of the elastic curve of a beam was derived: 
                

                                                𝐸𝐼൫೏మ೤
೏ೣమ൯ ൌ 𝑀ሺ𝑥ሻ 

 

                       
𝐴 𝐵

Elastic curve 

𝑤 

  

     

 
Method of double integration: This method involves integrating the equation of elastic curve 
twice. The first integration yields the slope, and the second integration gives the deflection. The 
constants of integration are determined considering the boundary conditions. 
 
Method of singularity function: This method involves using a singularity or half-range function 
to describe the equation of the elastic curve for the entire beam. A half-range function can be 
written in the general form as follows: 
 

〈𝑥 െ 𝑎〉௡  ൌ  ൜
0 𝑓𝑜𝑟 ሺ𝑥 െ 𝑎ሻ ൏ 0 𝑜𝑟 𝑥 ൏ 𝑎

ሺ𝑥 െ 𝑎ሻ௡ 𝑓𝑜𝑟 𝑥 െ 𝑎 ൒ 0 𝑜𝑟 𝑥 ൒ 𝑎
  

 
The method of singularity is best suited for beams with many discontinuities due to concentrated 
loads and moments. The method significantly reduces the number of constants of integration 
needed to be determined and, thus, makes computation easier when compared with the method of 
double integration.  
 
Moment-area method: This method uses two theorems to determine the slope and deflection at 
specified points on the elastic curve of a beam. The two theorems are as follows: 
 
First moment-area theorem: The change in slope between any two points on the elastic curve of 

a beam equals the area of the 
ெ

ாூ
 diagram between these two points. 



 

 

 

 

 
 

𝐴 
𝐵 

𝑃 

𝑥

୑
୉୍

 

𝐴 𝐵 
𝐴𝑟𝑒𝑎 𝜃𝐴/𝐵 

𝐵 𝐴

𝜃𝐴/𝐵 ൌ 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑀/𝐸𝐼 diagram 

 
Second moment-area theorem: The vertical deflection of point A from the tangent drawn to the 

elastic curve at point B equals the moment of the area under the 
ெ

ாூ
 diagram between these two 

points about point A.  
 
 
 
 
 
 
 
 
Conjugate beam method: A conjugate beam has been defined as an imaginary beam with the 

same length as that of the actual beam but with a loading equal the 
ெ

ாூ
 diagram of the actual beam. 

The supports in the actual beams are replaced with fictitious supports with boundary conditions 
that will result in the bending moment and the shear force at a specific point in a conjugate beam 
equaling the deflection and slope, respectively, at the same points in the actual beam. 
 
 

∆஺/஻ 
𝐵 𝐴

∆𝐴/𝐵ൌ ሺ𝐴𝑟𝑒𝑎 𝑜𝑓 𝑀/𝐸𝐼  𝑑𝑖𝑎𝑔𝑟𝑎𝑚ሻሺ𝑥′ሻ 
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୑
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𝐴 𝐵

Actual beam 

P P 

𝐷 𝐶 

୑
୉୍

diagram of actual beam  

୑
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Conjugate beam 

ெ
ாூ

 



 

 

 Practice Problems 

7.1 Using the double integration method, determine the slopes and deflections at the free ends of 
the cantilever beams shown in Figure P7.1 through Figure P7.4. EI = constant. 

 

 

 

 

   

𝐴 𝐵 

5 m 

20 kN/m 

Fig.  P7.1. Cantilever beam. 

𝐸 ൌ 200 𝐺𝑃𝑎 
𝐼 ൌ 600 ൈ 10଺ mmସ 

                  

3 kips/ft 

𝐴 𝐶
10 ft 

40 kips 𝐸𝐼 ൌ constant 
E = 29,000 ksi 
𝐼 ൌ 1000 inସ  

Fig. P7.2. Cantilever beam. 

10 ft 𝐵 

 

 

 

 

 

 

𝐴 𝐵

5 m 

5 kN . m 

Fig.  P7.3. Cantilever beam. 

𝐸 ൌ 200 𝐺𝑃𝑎 
𝐼 ൌ 400 ൈ 10଺ mmସ 

 

7.2 Using the double integration method, determine the slopes at point A and the deflections at 
midpoint C of the beams shown in Figure P7.5 and Figure P7.6. EI = constant. 

 

4k/f

Fig. P7.4. Cantilever beam.       EI ൌ constant
                 E ൌ 29,000 ksi
                    𝐼 ൌ 600 inଶ        

𝐴 𝐵

12 

 

 

 

 

 

𝐴 𝐵 

16 ft 

4 kips/ft 

𝐶 

𝐸𝐼 ൌ constant 
  𝐸 ൌ 10,000 ksi 
   𝐼 ൌ 1,000 inସ 

Fig.  P7.5. Beam. 

𝐴 𝐵 

4 m 

250 kN 
 2 m 

𝐶 

Fig. P7.6. Beam. 
𝐸 ൌ 200 𝐺𝑃𝑎 
𝐼 ൌ 600 ൈ 10଺ mmସ 



 

7.3 Using the conjugate beam method, determine the slope at point A and the deflection at point 
B of the beam shown in Figure P7.7 through Figure P7.10. 

 

 
 
  
 
 
 
 
 
 

𝐴 
𝐵 

12 m 

80 kN 

Fig.  P7.7. Beam. 

𝐶

𝐸 ൌ 200 𝐺𝑃𝑎 
𝐼 ൌ 500 ൈ 10଺ mmସ 

4 m 

𝐴
𝐵

120 kN 

𝐶 

10 m 

Fig. P7.8. Beam. 

𝐸 ൌ 200 𝐺𝑃𝑎 
𝐼 ൌ 800 ൈ 10଺ mmସ 

3 m 

 
 
 
 
 
 
 
 
 
 

𝐴 
𝐵 

90 kN 

𝐶 
10 m 

Fig.  P7.9. Beam. 

𝐸 ൌ 200 𝐺𝑃𝑎 
𝐼 ൌ 800 ൈ 10଺ mmସ 

3 m 

90 kN 

𝐷 
𝐼 2𝐼 2𝐼

3 m 

 
 
7.4 Using the moment-area method, determine the deflection at point A of the cantilever beam 
shown in Figure P7.11 through Figure P7.12. 

𝐴

4 kips/ft 

𝐷

8 ft 16 ft 8 ft 

10 kips 

Fig. P7.10. Beam. 

𝐵 𝐶

𝐸 ൌ 29,000 ksi 
𝐼 ൌ 3,000 inସ 

 
 
 
 
 
 
 
 
 
 

Fig.   P7.11. Cantilever beam. 

𝐴 𝐵
16 ft 

3 k/ft 

 
7.5 Using the moment-area method, determine the slope at point A and the slope at the midpoint 
C of the beams shown in Figure P7.13 and Figure P7.14. 
 
  
 
 

𝐴 𝐵

10 m 

100 kN 

Fig. P7.12. Cantilever beam. 



 
 
 
 
 
 
 
 
 
 
 

𝐴 𝐵 

12 ft 

3 kips/ft 

20 kip 
 6ft 

𝐶 

𝐸𝐼 ൌ constant 
  𝐸 ൌ 10,000 ksi 
   𝐼 ൌ 1,000 inସ Fig.  P7.13. Beam. 

 
7.6 Using the method of singularity function, determine the slope and the deflection at point A of 
the cantilever beam shown in Figure P7.15. 
 
 
 
 
 
 
 
 
 
 
 
7.7 Using the method of singularity function, determine the slope at point B and the slope at 
point C of the beam with the overhang shown in Figure P7.16. EI = constant. E = 200 GPa, 𝐼 ൌ
500 ൈ 10଺ mmସ.  
 
 
 
 
 
 
 
 
 
 
 
7.8 Using the method of singularity function, determine the slope at point C and the deflection at 
point D of the beam with overhanging ends, as shown in Figure P7.17. EI = constant.  
 
 
 
 
 

𝐴 
𝐵 

200 

𝐶 
8 

Fig.  P7.14. Beam.

𝐸 ൌ 200 𝐺𝑃𝑎 
𝐼 ൌ 800 ൈ 10଺ mmସ 

4 

𝐸 
𝐼 

2𝐼 

4 

𝐼 𝐷 

𝐴 

3 kips/ft 

𝐷 

9 ft 18 ft 9 ft 

50 k.ft 

Fig.  P7.15. Cantilever beam. 

𝐵 𝐶

𝐸 ൌ 29,000 ksi 
𝐼 ൌ 3,000 inସ 

2 m 

𝐴 
𝐵

3 m 

40 kN/m 

3m 

𝐶 
𝐷

60 kN 

Fig.  P7.16. Beam. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
7.9 Using the method of singularity function, determine the slope at point A and the deflection at 
point B of the beam shown in Figure P7.18. EI = constant.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

8 ft 4 ft 4 ft 

60 kips 

𝐶 𝐸 

4 ft 

40 kips 

4 ft 

20 kips 
200 k . ft 

Fig.  P7.17. Beam. 

𝐴 𝐵 𝐷
𝐹 

𝐸 ൌ 29,000 ksi 
𝐼 ൌ 3,000 inସ 

4 m 

𝐴 
𝐵 

3 m 

80 kN/m 

6 m 

𝐶 
𝐸

240 kN. m 
3 m 

60 kN 

𝐷

Fig.  P7.18. Beam. 𝐸 ൌ 200 𝐺𝑃𝑎 
𝐼 ൌ 600 ൈ 10଺ mmସ 



Chapter 8 

Deflections of Structures: Work-Energy Methods 
 
8.1 Virtual Work Method 
 
The virtual work method, also referred to as the method of virtual force or unit-load method, uses 
the law of conservation of energy to obtain the deflection and slope at a point in a structure. This 
method was developed in 1717 by John Bernoulli. To illustrate the principle of virtual work, 
consider the deformable body shown in Figure 8.1. First, applying a virtual or fictitious unit load 
𝑃௩  ൌ  1 at a point Q, where the deflection parallel to the applied load is desired, will create an 
internal virtual or imaginary load 𝑓 and will cause point 𝑄 to displace by a certain small amount. 
Then, placing the real external loads 𝑃ଵ, 𝑃ଶ, and 𝑀 on the same body will cause an internal 
deformation, 𝑑𝑆,  and an external deflection of point 𝑄 to 𝑄ᇱ by an amount ∆.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Upon placement of the real load, the point of application of the virtual load also displaces by ∆, 
and the applied unit load performs work by traveling the distance ∆. The work done by the virtual 
forces are as follows: 
 
 External work done by the unit load 𝑃௩ 
 
                                  ൌ 𝑃௩ ൈ Displacement 
                                  ൌ 1 ൈ ∆                                                                                                    ሺ8.1ሻ                         
 
Internal work done by the virtual load 𝑓 
 
                                  ൌ 𝑓 ൈ 𝑑𝑆                                                                                                  ሺ8.2ሻ            

𝑃𝑣 ൌ 1 

𝑆 

𝑓 

𝑓 

𝑄 

ሺ𝑎ሻ 

𝑃2 

𝑆

𝑄

𝑃1

∆

𝑀
𝑑𝑆

𝑄′

ሺ𝑏ሻ 

Fig.  8.1. Deformable body. 



                                      
Applying the principle of conservation of energy by equating equation 8.1 and equation 8.2 
suggests the following:          
 
External work done ൌ Internal work done 
 
 
 
                                                               
                                    1 ൈ ∆ ൌ 𝑓 ൈ 𝑑𝑆                                                                                                  ሺ8.3ሻ                            
 
 
where  
 
          𝑃௩ ൌ  1 ൌ external virtual unit load.  
           𝑓 ൌ  internal virtual load. 
           ∆ ൌ external displacement caused by real loads.  
         𝑑𝑆 ൌ internal deformation caused by real loads. 
 
Similarly, to obtain the slope at a point on a structure, apply a unit virtual moment 𝑀௩ at the 
specified point where the slope is desired, and apply the following equation derived via the 
principle of conservation of energy:  
 
 
                                     1 ൈ 𝜃 ൌ 𝑓ఏ ൈ 𝑑𝑆                                                                                               ሺ8.4ሻ                            
 
 
where 
 
          𝑀௩ ൌ  1 ൌ external virtual unit moment.  
             𝑓 ൌ internal virtual load.  
             𝜃 ൌ external rotational displacement caused by real loads.  
           𝑑𝑆 ൌ internal deformation caused by real loads. 
 
8.1.1 Virtual Work Formulation for the Deflection and Slope of Beams and Frames 
 
To develop the equations for the computation of deflection of beams and frames using the virtual 
work principles, consider the beam loaded as shown in Figure 8.2a. The deflection at point 𝐶 due 
to the applied external loads is required. First, removing the loads 𝑃 and 𝑊 and applying a virtual 
unit load 𝑃௩ ൌ  1 will cause elementary forces and deformations to develop in the bar, and a small 
deflection to occur at 𝐶, as follows: 
 
 
 
 

Real displacements 

Virtual Loads 

Real displacements 

Virtual Loads 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The stress acting on the differential cross-sectional area 𝑑𝐴 at a distance 𝑥 from the left-end support 
due to a virtual unit load is as follows: 
 
                       𝜎ᇱ ൌ  ೘೤

಺
                                                                                                                            ሺ8.5ሻ                            

 
where 
 
            𝑚 ൌ internal virtual moment at the section at a distance 𝑥e from the left-end support 
                     due to the virtual unit load. 
             𝐼 ൌ moment of inertia of the section. 
  
The force acting on the differential area due to the virtual unit load is written as follows: 
     
                    𝑓 ൌ  𝜎ᇱ𝑑𝐴 ൌ  ൫೘೤

಺
൯𝑑𝐴                                                                                                     ሺ8.6ሻ   

 
The stress due to the external loads P1 and P2 on the beam is written as follows: 
 
                    𝜎 ൌ  ಾ೤

಺
                                                                                                                                ሺ8.7ሻ   

 
The deformation of a differential beam length 𝑑𝑥 at a distance 𝑥 from the left-end support is as 
follows: 
 
                  𝛿 ൌ  𝜀𝑑𝑥 ൌ  ൫഑

ಶ
൯𝑑𝑥 ൌ  ൫ಾ೤

ಶ಺
൯𝑑𝑥                                                                                        ሺ8.8ሻ   

 
The work done by the force 𝑓 acting on the differential area due to the deformation of the 
differential beam length 𝑑𝑥 is as follows: 

𝑑𝑥

𝑃௏ ൌ 1

𝐿

𝑥 

ሺ𝑏ሻ 

A B
C

𝑑𝑥

𝑃 

𝐿

𝑥 

𝑊ሺ𝑥ሻ 

ሺ𝑎ሻ 

𝑑𝐴 

𝑦
𝐶௧ 

𝐶௕ 

ሺ𝑐ሻ 

N. A A B
C 

Fig.  8.2. Loaded beam. 



 
                  𝑑𝑊 ൌ  𝑓𝛿 ൌ  ൫೘೤

಺
൯𝑑𝐴 ൈ ൫ಾ೤

ಶ಺
൯𝑑𝑥  

                                     ൌ  ൫ಾ೘೤మ

ಶ಺మ ൯𝑑𝐴𝑑𝑥                                                                                                 ሺ8.9ሻ    
                                     
The internal work done by the total force in the entire cross-sectional area of the beam due to the 
applied virtual unit load when the differential length of the beam 𝑑𝑥 deforms by 𝛿 can be obtained 
by integrating with respect to 𝑑𝐴, as follows: 
 

׬                             𝑑𝑊 ൌ  ቂ׬ ൫ಾ೘೤మ

ಶ಺
൯𝑑𝐴

஺೙

஺భ
ቃ 𝑑𝑥஺  

                                    𝑊௜  ൌ  ൫ಾ೘
ಶ಺మ ׬ 𝑦ଶ𝑑𝐴൯𝑑𝑥 

                                           ൌ  ൣ൫ಾ೘
ಶ಺మ൯𝐼൧𝑑𝑥 

                                           ൌ  ൫ಾ೘
ಶ಺

൯𝑑𝑥                                                                                                 ሺ8.10ሻ  
 
The internal work done 𝑊௜ in the entire length of the beam due to the applied virtual unit load can 
now be obtained by integrating with respect to 𝑑𝑥, which is written as follows: 
                                  

                                 𝑊௜  ൌ ׬  ൫ಾ೘
ಶ಺

൯𝑑𝑥
௅

଴                                                                                                 ሺ8.11ሻ  
 
The external work done 𝑊௘ by the virtual unit load due to the deflection ∆ at point 𝐶 of the beam 
caused by the external loads is as follows:                            
 
                                𝑊௘  ൌ  1 ൈ ∆                                                                                                         ሺ8.12ሻ  
 
The principle of conservation of energy is applied to obtain the expression for the computation of 
the deflection at any point in a beam or frame, which is written as follows: 
                              
                                𝑊௘  ൌ  𝑊௜ 
 

                           1 ൈ ∆  ൌ  ׬ ൫ಾ೘
ಶ಺

൯𝑑𝑥
௅

଴     

 
                                                                                                                                                                ሺ8.13ሻ       
        
               
where 
 
1 ൌ external virtual or imaginary unit load on the beam or frame in the direction of the   
        required deflection ∆. 
∆  ൌ external displacement at the specified point on a beam or frame caused by the real  
        loads. 
𝑀 ൌ internal moment in the beam or frame caused by the real load, expressed in terms of the       
         horizontal distance 𝑥. 
𝑚 ൌ internal virtual moment in the beam or frame caused by the external virtual unit load,   
         expressed with respect to the horizontal distance 𝑥. 

∆  ൌ  න ቀெ௠
ாூ

ቁ
௅

଴
𝑑𝑥 



𝐸 ൌ modulus of elasticity of the material of the beam or frame. 
𝐼 ൌ moment of inertia of the cross-sectional area of the beam or frame about its neutral axis. 
 
Similarly, the following expression can be obtained for the computation of the slope at a point in 
a beam or frame: 
 
                                                                                                                                                                ሺ8.14ሻ                      
 
 
where  
 
𝜃 ൌ slope or tangent rotation at a point on a beam or frame. 
𝑚ఏ ൌ internal virtual moment in the beam or frame, expressed with respect to the  
           horizontal distance 𝑥, caused by the external virtual unit moment applied at the point where   
           the rotation is required. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8.1.2 Virtual Work Formulation for the Deflection of Trusses 
 
Consider the truss shown in Figure 8.3 for the development of the virtual work expression for the 
determination of the deflection of trusses. The truss is subjected to the loads 𝑃ଵ, 𝑃ଶ, and 𝑃ଷ, and 
the vertical deflection ∆ at joint 𝐹 is desired. First, remove the loads 𝑃ଵ, 𝑃ଶ, and 𝑃ଷ,  and apply a 
vertical virtual unit load 𝑃௩ ൌ  1 at joint 𝐹, as shown in Figure 8.3b. The virtual unit load will cause 
the virtual internal axial load 𝑛௜ to act on each member of the truss. Applying the forces P1, P2, 
and P3 will cause the deflection ∆ at joint F and the internal deformation 𝛿𝐿௜ in each member of 
the truss.  

𝜃 ൌ න ಾ೘ഇ
ಶ಺

ௗ௫

௅

଴
 

 
 

• Determine the support reactions in the real system using the equations 
of static equilibrium. 

• Write an expression for the moment in the real structure as a function 
of the horizontal distance 𝑥. The number of the equations will depend 
on the number of regions of the beam due to discontinuous loading.  

• Create a virtual system by removing all the loads acting on the beam 
and applying a unit load or a unit moment at the point where the 
deflection or slope is desired. 

• Write the moment expression for the virtual system in terms of the 
distance 𝑥.  

• Substitute the moment expressions into equation 8.1 and integrate to 
obtain the value of deflection or slope at the point considered.  

  
  

Procedure for Determination of Deflection in Beams and Frames 
by the Virtual Work Method 



 
 
 
 
 
 
 
 
 
 
 
 

𝑃1 

𝑃3

𝑃2
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𝐷
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ሺ𝑎ሻ 

Fig.  8.3. Sample truss.  
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ሺ𝑏ሻ 

 
Using the law of conservation of energy, the work by the virtual unit load at joint F and the virtual 
internal axial loads on the members of the truss can be written as follows: 
 
External work ൌ internal work 
 
                           1 ൈ ∆ ൌ  ∑ 𝑛௜ሺ𝛿𝐿௜ሻ௡

௜ୀଵ                                                                                   ሺ8.15ሻ        
 
But, for a member with length 𝐿௜, area 𝐴௜, and material Young’s modulus 𝐸௜, the deformation is 
written as follows: 
 
                              𝛿𝐿௜ ൌ ಿ೔ಽ೔

ಲ೔ಶ೔
                                                                                                   ሺ8.16ሻ               

 
 
Thus, the virtual work expression for the deflection of a truss can be written as follows: 
 
 
                                                                                                                                                                ሺ8.17ሻ   
 
 
where 
 
1 ൌ  external vertical virtual unit load applied at joint 𝐹.     
 𝑛 ൌ internal axial virtual force in each truss member due to the virtual unit load, 𝑃௩ ൌ 1.  
𝑁 ൌ axial force in each truss member due to the real loads 𝑃ଵ, 𝑃ଶ, and 𝑃ଷ. 
∆  ൌ external joint displacement caused by the real loads. 
𝛿𝐿 ൌ deformation of each truss member caused by the real loads. 
 
   

∆ ൌ  ∑ 𝑛௜ ቀಿ೔ಽ೔
ಲ೔ಶ೔

ቁ௡
௜ ୀ ଵ   



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Example 8.1

Using the virtual work method, determine the deflection and the slope at a point B of the cantilever 
beam shown in Figure 8.4a. 𝐸 ൌ  29 ൈ 10ଷksi, I ൌ  600 inସ. 
 

 

 

 

 

 

 

 

 

 

 

 

6 kips/ft 

6 ft 
𝐴 𝐶 Real system 

3 ft 𝐵 

ሺ𝑎ሻ 

Fig.  8.4. Cantilever beam. 

6 kips/ft 

𝑥ଵ 
𝑥ଶ 

ሺ𝑏ሻ 

6 ft 
𝐴 𝐶 

1 kip 

Virtual system for computing ∆஻ 
3 ft 𝐵 

ሺ𝑐ሻ 

• Determine the support reactions in the real system with the applied 
loads using the equations of equilibrium. 

• Determine the internal forces N in truss members caused by the external 
loads on the real system.  

• Remove all the external loads on the real system and apply a virtual 
unit load on the joint in the truss in the direction of required deflection.  

• Determine the internal virtual forces n in the members of the truss 
caused by the external virtual unit load placed in the joint where the 
deflection is desired. 

• Calculate the deflection ∆ in the joint of the truss caused by the real 
loads using equation 8.17. 

Procedure for Determination of Deflection in Trusses by the 
Virtual Work Method 
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3 ft 𝐵 
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Solution 
 
Real and virtual systems. The real and virtual systems are shown in Figure 8.4a, Figure 8.4c, and 
Figure 8.4e, respectively. Notice that the real system consists of the external loading carried by the 
beam, as specified in the problem. The virtual system consists of a unit 1-k load applied at B, where 
the deflection is required, and 1-k-ft moment applied at the same point where the slope is 
determined. The bending moments at each portion of the beam, with respect to the horizontal axis, 
are presented in Table 8.1. Notice that the origin of the horizontal distance, x, for both the real and 
virtual system is at the free end, as shown in Figure 8.4b, Figure 8.4d, and Figure 8.4f. 
 
Table 8.1. Bending moments at portions of the beam. 

 

Portion 

𝑋 െ Coordinate Deflection Slope 
Origin Limit (ft) M M M mఏ 

AB A 0-3 0 0 0 0 

BC A 3-9 െ3ሺ𝑥 െ 3ሻଶ 1ሺ𝑥 െ 3ሻ െ3ሺ𝑥 െ 3ሻଶ െ1 

 
Deflection at B. The deflection at the free end of the beam is determined by using equation 8.1, 
as follows:  



                         1 kip. ∆஻ ൌ ׬  ೘ಾ
ಶ಺

௅
଴ 𝑑𝑥 ൌ ׬  ሺబሻሺబሻ೏ೣ

ಶ಺

ଷ
଴ ൅ ׬ షయሺೣషయሻమሺೣషయሻ೏ೣ

ಶ಺

ଽ
ଷ   

                          1 kip. ∆஻ ൌ  షవళమ ౡ .  ౜౪య

ಶ಺
 

Therefore,  

                                      ∆஻ ൌ  ିଽ଻ଶ ୩ . ୤୲య ሺଵଶሻయ୧୬య/୤୲య

ሺଶଽൈଵ଴య୩/୧୬మሻሺ଺଴଴୧୬రሻ
 

                                       ൌ  െ0.097 in.                               ∆஻ ൌ  0.097 in. ↑   

Slope at B. The slope at the free end of the beam is determined by using equation 8.2, as follows:  
                       

                          ሺ1 kN. mሻ. 𝜃஻ ൌ ׬  ౣಐಾ
ಶ಺

௅
଴ 𝑑𝑥 ൌ ׬  ሺబሻሺబሻ೏ೣ

ಶ಺

ଷ
଴ ൅ ׬ షయሺೣషయሻమሺషభሻ೏ೣ

ಶ಺

ଽ
ଷ    

                           ሺ1 k. ftሻ. 𝜃஻  ൌ  ଶଵ଺ ୩మ. ୤୲య

ாூ
 ൌ  మభల ౡమ. ౜౪య

൫మవൈభబయౡ/౟౤మ൯൫లబబ౟౤ర൯
  

Therefore, 

           𝜃஻  ൌ  ଶଵ଺୩. ୤୲మ

ሺଶଽൈଵ଴య୩/୧୬మሻሺ଺଴଴୧୬రሻ
 ൌ  మభలሺభమሻమ

൫మవൈభబయౡ/౟౤మ൯൫లబబ౟౤ర൯
 ୀ ଴.଴଴ଵ଼ ୰ୟୢ       𝜃஻  ൌ  0.0018 rad               

 

 

                             Example 8.2 

Using the virtual work method, determine the deflection at B and the slope at C for the simply 
supported beam subjected to a concentrated load, as shown in Figure 8.5a . EIൌ constant. 𝐸 ൌ
29 ൈ 10ଷksi. 𝐼 ൌ 24 inସ. 
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Fig.  8.5. Simply supported beam. 
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Real and virtual systems. The real and virtual systems are shown in Figure 8.5a, Figure 8.5c, and 
Figure 8.5e, respectively. The bending moments at each portion of the beam, with respect to the 
horizontal axis, are presented in Table 8.2. The origin of the horizontal distances for both the real 
and virtual system are shown in Figure 8.5b, Figure 8.5d, and Figure 8.5f. 
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ଽ
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Solution 



Table 8.2. Bending moments at portions of the beam. 
                              𝑥 Coordinate                           Deflection                                       Slope 
                        __________________          __________________         ____________________ 
Portion             Origin           Limits (ft)           M                      m                        M                    mఏ 
 
 AB                     A                  0-6                    4𝑥                     ೣ

య
                         4𝑥                   - ೣ

వ
   

 CB                     C                  0-3                     8𝑥                    మೣ
య

                        8𝑥                     ೣ
వ

െ 1   
 

Deflection at B. The deflection at B can be determined by using equation 8.1, as follows:  
 

                         1 kip. ∆஻ ൌ ׬  ೘ಾ
ಶ಺

௅
଴ 𝑑𝑥 ൌ ׬ 

ሺరೣሻቀ
ೣ
యቁ೏ೣ

ಶ಺

଺
଴ ൅ ׬

ሺఴೣሻቀ
మೣ
య ቁ೏ೣ

ಶ಺

ଷ
଴   

                          1 kip. ∆஻ ൌ  భరర ౡ .  ౜౪య

ಶ಺
 

Therefore,  

                                      ∆஻ ൌ  ଵସସ ୩ . ୤୲య ሺଵଶሻయ୧୬య/୤୲య

ሺଶଽൈଵ଴య ୩/୧୬మሻሺଶସ ୧୬రሻ
 ൌ  0.36 in           ∆஻ ൌ  0.36 in. ↓   

The positive value indicates deflection in the direction of the applied virtual load. 

Slope at C. The slope at C can be determined by using equation 8.2, as follows:  
 

                          ሺ1 k . ftሻ. 𝜃஼ ൌ ׬  ౣಐಾ
ಶ಺

௅
଴ 𝑑𝑥 ൌ ׬ 

ሺరೣሻቀష
ೣ
వቁ೏ೣ

ಶ಺

଺
଴ ൅ ׬

ሺఴೣሻቀ
ೣ
వ షభቁ೏ೣ
ಶ಺

ଷ
଴    

                           ሺ1 k. ftሻ. 𝜃஼  ൌ  െ ଺଴ ୩మ. ୤୲య

ாூ
ൌ െ లబ ౡమ. ౜౪య

൫మవൈభబయౡ/౟౤మ൯൫మర౟౤ర൯
  

 

Therefore, 

                              𝜃஼  ൌ  െ ଺଴୩. ୤୲మ

൬ଶଽൈభబయౡ
౟౤మ ൰ሺଶସ ୧୬రሻ

 ൌ  െ లబሺభమሻమ

൫మవൈభబయౡ/౟౤మ൯൫మర ౟౤ర൯
 

                                   ൌ  െ0.012 rad                          𝜃஼ ൌ  0.012               

   

               

 
Example 8.3 

Using the virtual work method, determine the deflection at B and the slope at D for the compound 
beam shown in Figure 8.6a. 𝐸 ൌ 200 GPa and 𝐼 ൌ 250 ൈ 10଺ mmସ. 
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Fig.  8.6. Compound beam. 
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Solution 
 
Real and virtual systems. The real and virtual systems are shown in Figure 8.6a, Figure 8.6b, and 
Figure 8.6c, respectively. The bending moment at each portion of the beam, with respect to the 
horizontal axis, are presented in Table 8.3.  
 

Table 8.3. Bending moments at portions of the beam. 
 

Portion 

𝑋 െ Coordinate Deflection Slope 
Origin Limit (ft) M m M mఏ 

DC D 0-7 70𝑥 െ 10𝑥ଶ 0 70𝑥 െ 10𝑥ଶ ௫
଻

െ 1 

CB C 0-2 െ70𝑥 0 െ70𝑥 ௫
଻
 

BA C 2-4 െ70𝑥 െ 18ሺ𝑥 െ 2ሻ െ𝑥 െ70𝑥 െ 18ሺ𝑥 െ 2ሻ ௫
଻
 

 



Deflection at B. The deflection at B can be determined using equation 8.1, as follows:  
 

1 kN. ∆஻ ൌ  න ೘ಾ
ಶ಺

௅

଴
𝑑𝑥 ൌ  න ሺబሻ൫ళబೣషభబೣమ൯೏ೣ

ಶ಺

଻

଴
൅ න ሺబሻሺషళబೣሻ೏ೣ

ಶ಺

ଶ

଴
൅ න ሺషೣሻሾషళబೣషభఴሺೣషమሻሿ೏ೣ

ಶ಺

ସ

ଶ
 

                1 kN. ∆஻ ൌ  భరమల.లళ ౡొమ.ౣయ

𝑬𝑰
 

Therefore,  

         ∆஻ ൌ  భరమల.లళ ౡొ.ౣయ

൫మబబൈభబల ౡొ/ౣమ൯൫మఱబൈభబలౣౣర൯൫భబషభమౣర/ౣౣర൯
  ൌ  0.0285 m         ∆஻ ൌ  28.5 mm ↓   

Slope at D. The slope at D can be determined using equation 8.2, as follows:  
 

    ሺ1 kN. mሻ. 𝜃஽ ൌ ׬  ౣಐಾ
ಶ಺

௅
଴ 𝑑𝑥 ൌ ׬  ቀ

ೣ
ళషభቁ൫ళబೣషభబೣమ൯೏ೣ

ಶ಺

଻
଴ ൅ ׬ ቀ

ೣ
ళቁሺషళబೣሻ೏ೣ

ಶ಺

ଶ
଴ ൅ ׬ ቀ

ೣ
ళቁሾషళబೣషభఴሺೣషమሻሿ೏ೣ

ಶ಺

ସ
ଶ   

 

                           ሺ1 kN. mሻ. 𝜃஽  ൌ  ିఱభల.యభ ౡొమ.ౣయ

ಶ಺
  

Therefore, 

   𝜃஽  ൌ  షఱభల.యభ ౡొ.ౣయ

൫మబబൈభబల ౡొ/ౣమ൯൫మఱబൈభబలౣౣర൯൫భబషభమౣర/ౣౣర൯
   ൌ  െ0.0103 rad       𝜃஽  ൌ  0.0103 rad              

The negative sign indicates that the rotation at point D is in the direction opposite to the applied 
virtual moment.  
 
 

 Example 8.4

Using the virtual work method, determine the slope at joint A of the frame shown in Figure 8.7a. 
𝐸 ൌ 29 ൈ 10ଷksi and 𝐸𝐼 ൌ 700 inସ.  
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Fig.  8.7. Frame. 
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Solution 
 
Real and virtual systems. The real and virtual systems are shown in Figure 8.7a and Figure 8.7c, 
respectively. The bending moment at each segment of the beam and column of the frame are 
presented in Table 8.4, and their origins are shown in Figure 8.7b and Figure 8.7d. 
 

Table 8.4. Bending moments at portions of the beam. 
 

Portion 
𝑋 െ Coordinate Deflection 

Origin Limit M m 
AB 0 0-12 48𝑥 െ 2𝑥ଶ 1 
CB 0 0-12 24𝑥 ௫

ଵଶ
 

 

Slope at A. The slope at A can be determined by using equation 8.2, as follows:  
                          

                          ሺ1 k . ftሻ. 𝜃஺  ൌ ׬  ౣಐಾ
ಶ಺

௅
଴ 𝑑𝑥 ൌ ׬  ሺభሻ൫రఴೣషమೣమ൯೏ೣ

ಶ಺

ଵଶ
଴ ൅ ׬

ሺమరೣሻቀ
ೣ

భమ ቁ೏ೣ
ಶ಺

ଵଶ
଴    

                           ሺ1 k. ftሻ. 𝜃஺  ൌ  ଷସହ଺ ୩మ. ୤୲య

ாூ
  

Therefore, 

 𝜃஺  ൌ  ଷସହ଺୩. ୤୲మ

ሺଶଽൈଵ଴య୩/୧୬మሻሺ଻଴଴ ୧୬రሻ
 ൌ  𝟑𝟒𝟓𝟔ሺభమሻమ

൫మవൈభబయౡ/౟౤మ൯൫ళబబ ౟౤ర൯
  ൌ 0.0245 rad       𝜃஺  ൌ  0.0245 rad              

 

 

 



 
Example 8.5

 
Using the virtual work method, determine the vertical deflection at A of the frame shown in Figure 
8.8a. 𝐸 ൌ 200 GPa and 𝐼 ൌ 250 ൈ 10଺ mmସ. 
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Fig.  8.8. Frame. 

 
Solution 
 
Real and virtual systems. The real and virtual systems are shown in Figure 8.8a and Figure 8.8c, 
respectively. The bending moment at each segment of the beam and column of the frame are 
presented in Table 8.5, and their origins are shown in Figure 8.8b and Figure 8.8d. 
 



Table 8.5. Bending moments at portions of the beam. 
 

Portion 

𝑋 െ Coordinate Deflection 
Origin Limit M m 

AB A 0-4 0 െ𝑥 

BC A 4-8 െ16ሺ𝑥 െ 4ሻ െ𝑥 

CE C 0-10 െ64 -8 

 

Deflection at A. The deflection at A can be determined by using equation 8.1, as follows:  
  

1 kN. ∆஺ ൌ  න ೘ಾ
ಶ಺

௅

଴
𝑑𝑥 ൌ  න ሺబሻሺషೣሻ೏ೣ

ಶ಺

ସ

଴
൅ න ൫షభలሺೣషరሻ൯ሺషೣሻ೏ೣ

ಶ಺

଼

ସ
൅ න ሺషఴሻሺషలరሻ೏ೣ

ಶ಺

ଵ଴

଴
 

                1 kN. ∆஺ ൌ  ఴఱయ.యయ ౡొమ.ౣయ

𝑬𝑰
 

Therefore,  

          ∆஺ ൌ  ఴఱయ.యయ ౡొ.ౣయ

൫మబబൈభబల ౡొ/ౣమ൯൫మఱబൈభబలౣౣర൯൫భబషభమౣర/ౣౣర൯
  ൌ  0.017 m           ∆஺ ൌ  17 mm ↓    

 

 

 

Example 7.17 Example 8.6 

Using the virtual work method, determine the horizontal deflection at joint B of the truss shown in 
Figure 8.9a. 𝐸 ൌ 12000 ksi and 𝐴 ൌ 3 inଶ. 
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Solution 
 
Real and virtual systems. The real and virtual systems are shown in Figure 8.9. Notice that the real 
system consists of the external loading carried by the truss, as specified in the problem. The virtual 
system consists of a unit 1-k load applied at B, where the deflection is desired, and a 1-k-ft moment 
applied also at B, where the slope is required.  
 
Truss analysis. The analysis of the real system used to obtain the forces in members is presented 
below. The forces in members in the virtual system are obtained by dividing the forces in the real 
system by the applied external load, as the deflection is desired for the same joint where the 
deflection is required.   
 
Support reactions. The reactions are computed by the application of the equations of equilibrium, 
as follows: 

൅↶ ෍ 𝑀஽ ൌ  0 

6𝐴௬ െ 90ሺ4ሻ  ൌ  0    
𝐴௬ ൌ  60 kips                                                                                                𝐴௬ ൌ  60 kips ↓     

൅ → ∑ 𝐹௫ ൌ  0   
െ𝐴𝑥 ൅ 90 ൌ  0      
𝐴𝑥  ൌ  90 kips                                                                                                𝐴𝑥 ൌ  90 kips ←              

൅↑ ∑ 𝐹௬ ൌ  0  
𝐷௬ െ 60 ൌ  0 
𝐷𝑦 ൌ  60 kN                                                                                                   𝐷𝑦 ൌ  60 kips ↑ 
 

Joint A. 
 
൅↑ ∑ 𝐹௬ ൌ  0  
𝐹஺஻ െ 60 ൌ  0 
𝐹𝐴𝐵 ൌ  60 kips 

A 

𝐹஺஻ 

𝐹஺ா 90 kips

60 kips 



 
൅ → ∑ 𝐹௫ ൌ  0   
𝐹𝐴𝐸 െ 90 ൌ  0      
𝐹𝐴𝐸 ൌ  90 kips                                   

 

Joint B. 

൅↑ ∑ 𝐹௬ ൌ  0  

െ𝐹஻ா sin53.13° െ 𝐹஻஺ ൌ  0 
𝐹𝐵𝐸 ൌ  െ ிಳಲ

௦௜௡ହଷ.ଵଷ°
 ൌ  െ ଺଴

௦௜௡ହଷ.ଵଷ°
ൌ  െ75 kips 

 
൅ → ∑ 𝐹௫ ൌ  0   
𝐹𝐵𝐸𝑐𝑜𝑠53.13° ൅ 90 ൅ 𝐹𝐵𝐶 ൌ  0      
𝐹𝐵𝐶 ൌ  െ𝐹𝐵𝐸𝑐𝑜𝑠53.13° െ 90 ൌ  െሺെ75ሻ𝑐𝑜𝑠53.13° െ 90 ൌ  െ45 kips    

 

Joint C. 

൅ → ∑ 𝐹௫  ൌ  0   
𝐹𝐶𝐷 𝑠𝑖𝑛36.87° െ 𝐹𝐶𝐵  ൌ  0      
𝐹𝐶𝐷 ൌ  ಷ಴ಳ

ೞ೔೙యల.ఴళ°
 ൌ  െ రఱ

ೞ೔೙యల.ఴళ
 ൌ  െ75 kips  

൅↑ ∑ 𝐹௬  ൌ  0  
െ𝐹஼ா െ 𝐹஼஽𝑐𝑜𝑠36.87° ൌ  0 
𝐹𝐶𝐸 ൌ  െ𝐹𝐶𝐷𝑐𝑜𝑠36.87° ൌ  െሺെ75ሻ𝑐𝑜𝑠36.87° ൌ  60 kips 
                           

 Joint D. 

൅ → ∑ 𝐹௫ ൌ  0   
െ𝐹𝐷𝐶 𝑐𝑜𝑠36.87° െ 𝐹𝐷𝐸 ൌ  0      
𝐹𝐷𝐸 ൌ  െ𝐹𝐷𝐶 𝑐𝑜𝑠36.87° ൌ  െሺെ75ሻ𝑐𝑜𝑠36.87° ൌ  60 kips  

 

 

 

 

 

B 

𝐹஻஺

𝐹஻ா 

𝐹஻஼ 90 kips 
53.13° 

𝐹஼஻ 

𝐹஼஽ 
𝐹஼ா

C 
36.87° 

𝐹஽஼ 

𝐹஽ா

60 kips 

53.13°

60
 k

 

60
 k

 

90 k 60 k 

45 k 

Real System   

0.
67

 k
 

0.
67

 k
 

1 k 0.67 k 

0.5 k 

Virtual System   



 

Horizontal deflection at B. The desired horizontal deflection at joint B is computed using 

equation 8.17, as presented in Table 8.6.     

Table 8.6. Horizontal deflections. 
Member Length (ft) N (kip) N (kip) NnL (kଶ. ftሻ 
AB 4 60 0.67 160.8 
AE 3 90 1 270 
BC 3 45 0.5 67.5 

BE 5 75 0.83 311.25 
CD 5 75 0.83 311.25 
CE 4 60 0.67 160.8 

DE 3 60 0.67 120.6 
                                                                                                                                   ∑ 𝑁𝑛𝐿 ൌ1401.4           

 

1ሺ∆஻ሻ  ൌ  ଵ
ா஺

෍ 𝑁𝑛𝐿 

ሺ1 kሻ∆஻ ൌ  ଵସ଴ଵ.ସ
ଵଶ଴଴଴ሺଵଶమሻሺଷሻሺଵଶషమሻ

 

∆஻ ൌ  0.039 ft ൌ  0.47 in                                                                     ∆஻ ൌ  0.47 in ↓    
 
 
 
 
  Example 8.7 

Using the virtual work method, determine the vertical deflection at joint D of the truss shown in 
Figure 8.10a. 𝐸 ൌ 200 GPa and 𝐴 ൌ 5 cmଶ. 
 

 

 

 

 

 

 

 

 

A 

B 

C 
D 

120 kN 

5 m 5 m 

4 m 

Fig.  8.10. Truss. 

ሺ𝑎ሻ Real System 

120 kN 

A 

B 

C 
D 

5 m 5 m 

4 m 

𝐴𝑦 

𝐴𝑥

ሺ𝑏ሻ FBD of Real System 



 

 

 

 

 

A 

B 

C 
D 

5 m 5 m 

4 m 

ሺ𝑐ሻ Virtual System 
1 kip 

A 

B 

C 
D 

5 m 5 m 

4 m 

ሺ𝑑ሻ FBD of Virtual System 

1 kip 

Solution 
 
Real and virtual systems. The real and virtual systems are shown in Figure 8.10. Notice that the 
real system consists of the external loading carried by the beam, as specified in the problem. The 
reactions in both supports in the real system are the same by reason of symmetry in loading and 
equal 60 kN. The virtual system consists of a unit 1-k load applied at B, where the deflection is 
required, and a 1-k-ft moment applied at the same point, where the slope is to be determined. The 
bending moment at each portion of the beam with respect to the horizontal axis is presented in 
Table 8.7. Notice that the origin of the horizontal distance x for both the real and virtual system is 
at the free end, as shown in Figure 8.10. 
 
Real system-truss analysis. 
 
Joint A. 
 
൅↑ ∑ 𝐹௬ ൌ  0  
𝐹஺஻𝑠𝑖𝑛38.66° ൅ 60 ൌ  0 
𝐹𝐴𝐵 ൌ  െ96.05 kN 
 
൅ → ∑ 𝐹௫ ൌ  0   
𝐹𝐴𝐵𝑐𝑜𝑠38.66° ൅ 𝐹𝐴𝐷 ൌ  0      
𝐹𝐴𝐷 ൌ  െ𝐹𝐴𝐵𝑐𝑜𝑠38.66°                                                                                          
        ൌ  െሺെ96.05ሻ𝑐𝑜𝑠38.66° ൌ  75 kN 
 

Joint D. 

൅↑ ∑ 𝐹௬ ൌ  0  
𝐹𝐷𝐵 ൌ  0 
൅ → ∑ 𝐹௫ ൌ  0   
 െ𝐹𝐷𝐴 ൅ 𝐹𝐷𝐶 ൌ  0   
𝐹𝐷𝐶 ൌ  𝐹𝐷𝐴 ൌ  75 kN 
 

 
 
 

𝐹஺஻ 

𝐹஺஽

60 kN

38.66°

Joint D 
𝐹஽஻

𝐹஽஼
𝐹஽஺ 

75 kN 75 kN

0 

ሺ𝑒ሻ Real System Axial 
Forces, N 



Virtual system truss analysis. 
 
Joint A. 
 
൅↑ ∑ 𝐹௬ ൌ  0  

𝐹஺஻𝑠𝑖𝑛38.66° ൅ 0.5 ൌ  0 
𝐹𝐴𝐵 ൌ  െ0.08 kN 
 
൅ → ∑ 𝐹௫ ൌ  0   
𝐹𝐴𝐵𝑐𝑜𝑠38.66° ൅ 𝐹𝐴𝐷 ൌ  0      
𝐹𝐴𝐷 ൌ  െ𝐹𝐴𝐵𝑐𝑜𝑠38.66°                                                                              

𝐹஺஻ 

𝐹஺஽ 

0.5 kN

38.66

            

0.062 kN 0.062 kN

ሺ𝑓ሻ Virtual System- Axial 
Forces, n 

        ൌ  െሺെ0.08ሻ𝑐𝑜𝑠38.66° ൌ  0.062 kN 
 
Joint D. 

൅↑ ∑ 𝐹௬ ൌ  0  
𝐹஽஻ െ 1 ൌ  0 
𝐹𝐷𝐵 ൌ  1kN 
 

൅ → ∑ 𝐹௫ ൌ  0   
 

                                                          

𝐹஽஻

𝐹஽஼
𝐹஽஺ 

1 kip 
െ𝐹𝐷𝐴 ൅ 𝐹𝐷𝐶 ൌ  0                                 
 𝐹𝐷𝐶 ൌ 𝐹஽஺  ൌ  0.062 kN 
 
Vertical deflection at D. The desired vertical deflection at joint D is calculated using equation 
8.17, as presented in Table 8.7.     

Table 8.7. Vertical deflections. 
Member Length (m) N n NnL (kNଶ. mሻ 
AB 6.4 -96.05 -0.08 49.18 
AD 5 75 0.062 23.25 
BC 6.4 -96.05 -0.08 49.18 

BD 4 0 1 0 
DC 5 75 0.062 23.25 
                                                                                                                      ∑ 𝑁𝑛𝐿 ൌ 144.86 

 

1ሺ∆஽ሻ  ൌ  ଵ
ா஺

෍ 𝑁𝑛𝐿 

ሺ1 𝑘𝑁ሻ∆஽ ൌ  ଵସସ.଼଺
ଶ଴଴ሺଵ଴లሻሺ଴.଴଴଴ହሻ

𝑘𝑁. 𝑚 

∆஽ ൌ  1.45 ൈ 10ିଷ𝑚 ൌ  1.45 𝑚𝑚                                             ∆஽ ൌ  1.45 𝑚𝑚 ↓  
 



 
8.2 Energy Methods 
 
The energy method for the determination of deflection is based on Alberto Castigliano’s second 
theorem, which was published in 1879. The theorem states the following: 
 
The deflection or rotation in a specified direction and at a specified point in a linear elastic, 
statically determinate structure subjected to a given force or couple is equal to the partial derivative 
of the total external work or the total internal energy, with respect to the applied force or couple in 
the direction of the force or couple. 
 
Castigliano’s second theorem, with respect to the applied force, can be expressed 
mathematically, as follows: 
 
                                  ∆ ൌ  ങೈ

ങು
 ൌ  ങೆ

ങು
                                                                                        ሺ8.18ሻ  

 
where 
 
∆ ൌ deflection at the point of application of the load P in the direction of the load P. 
𝑊 ൌ work done. 
𝑈 ൌ strain energy. 
 
8.2.1 Energy Method Formulation for Beams and Frames 
 
Equation 8.18 can be mathematically manipulated to include moment and is written as follows: 
 
                                  ∆ ൌ  ങೆ

ങು
 ൌ  ങೆ

ങಾ
ൈ ങಾ

ങು
                                                                                ሺ8.19ሻ  

 
The total internal work done or strain energy stored in a beam or frame due to gradually applied 
real loads can be expressed as follows: 
 
                                𝑊 ൌ  𝑈 ൌ ׬  ಾమ

మಶ಺
𝑑𝑥                                                                                ሺ8.20ሻ  

                            
The partial derivative of equation 8.20, with respect to the moment, is as follows: 
 
                            ങೆ

ങಾ
 ൌ ൫మಾ׬ 

మಶ಺
൯ 𝑑𝑥 ൌ ൫ಾ׬ 

ಶ಺
൯ 𝑑𝑥                                                                      ሺ8.21ሻ  

 
Substituting equation 8.21 into equation 8.19 yields the following equation for the computation of 
deflection for beams and frames by the energy method: 
 
 
                                                                                                                                                 ሺ8.22ሻ 
 
                    

∆ ൌ  න ቀெ
ாூ

ቁ ቀడெ
డ௉

ቁ 𝑑𝑥 



With respect to the applied couple, Castigliano’s second theorem can be expressed 
mathematically as follows: 
 
                                  𝜃 ൌ  ങೈ

ങಾᇲ  ൌ  ങೆ
ങಾᇲ                                                                                     ሺ8.23ሻ 

 
where 
 
𝜃 ൌ rotation at the point of application and direction of the couple 𝑀ᇱ.  
 
Equation 8.23 can be mathematically manipulated to include the moment, as follows: 
 
                                  𝜃 ൌ  ങೆ

ങಾᇲ  ൌ  ങೆ
ങಾ

ൈ ങಾ
ങಾᇲ                                                                                ሺ8.24ሻ  

 
Substituting equation 8.21 into equation 8.24 suggests the following equation for the computation 
of slopes for beams and frames by the energy method: 
 
 
                                                                                                                                                  (8.25) 
 
 
 Example 8.8 

 

Using Castigliano’s second theorem, determine the deflection and the slope at the free end of the 
cantilever beam shown in Figure 8.11a. 

 

 

 

 

 

 

 

 

 

 

 

 

𝜃 ൌ  න ቀெ
ாூ

ቁ ቀ డெ
డெᇲቁ 𝑑𝑥 

2 kips/ft 

𝐴 𝐵 

12 ft 16 kip.ft 

Fig. 8.11. Cantilever beam. 
ሺ𝑎ሻ 

2 kips/ft 

𝐴 𝐵 

16 kip.ft 

P 

𝑥 

ሺ𝑏ሻ 

2 kips/ft 

𝐴 𝐵 

Mᇱ 
𝑥 

ሺ𝑐ሻ 



 

 
Placement of imaginary force P and couple M’. The force 𝑃 and the moment 𝑀ᇱ are placed at point 
A, where the deflection and slope are desired, as shown in Figure 8.11b and Figure 8.11c, 
respectively.  
 
Bending moment. To determine the deflection, write the bending moment equation for the beam as 
a function of the force 𝑃. To determine the slope, write the bending moment equation for the beam 
as a function of 𝑀ᇱ. The x coordinates for the moment equations are also shown in Figure 8.11b 

and Figure 8.11c. Compute the partial derivatives 
డெ

డ௉

Solution 

 and 
డெ

డெᇲ, and then apply Castigliano’s 

equation 8.22 and equation 8.25  to determine the deflection and slope. 

Deflection at A. 
 
𝑀 ൌ  െ16 െ 𝑃𝑥 െ 𝑥ଶ 

డெ
డ௉

ൌ  െ𝑥 

Setting 𝑃 ൌ  0  and applying Castigliano’s theorem suggests the following:               

            ∆஺ ൌ ׬  ൫ಾ
ಶ಺

൯൫ങಾ
ങು

൯𝑑𝑥
௅

଴  

                        ∆஺ ൌ ׬  ൫షభలషೣమ

ಶ಺
൯ሺെ𝑥ሻ𝑑𝑥

ଵଶ
଴  

                             ൌ  లయయల ౡ .  ౜౪య

ಶ಺
  ୀ  లయయలሺభమሻయ ౡ.  ౜౪య

ሺమవబబబሻሺభఱబబሻ   ൌ  0.252 in           ∆஺ ൌ  0.252 in ↓    

Slope at A. 
 
𝑀 ൌ  െ𝑀ᇱ െ 𝑥ଶ 

డெ
డெᇲ  ൌ  െ1 

Setting Mᇱ  ൌ  16 k . ft   and applying Castigliano’s theorem suggests the following:                 

         𝜃஺ ൌ  න ቀெ
ாூ

ቁ ቀ డெ
డெᇲቁ 𝑑𝑥

௅

଴
 

                    𝜃஺ ൌ 𝑠 ׬ ൫షభలషೣమ

ಶ಺
൯ሺെ1ሻ𝑑𝑥

ଵଶ
଴  

                          ൌ  ళలఴ ౡ .  ౜౪మ

ಶ಺
  ୀ  ళలఴሺభమሻమ 

ሺమవబబబሻሺభఱబబሻ  ൌ 0.0025 rad           𝜃஺ ൌ  0.0025 rad              

 

 



 

 Example 8.9 

Using Castigliano’s second theorem, determine the deflection at point A of the beam with the 
overhang shown in Figure 8.12a. 

 

 

 

 

 

 

 

 

 
 
 
 
 

40 kN 

4 m 

𝐴 
𝐵 

8 m 

C 

20 kN/m 

Fig. 8.12. Beam with overhang. 

ሺ𝑎ሻ 

P 

𝐴 
𝐵 

C 

20 kN/m 

𝑥ଶ 𝑥ଵ 

1.5P െ 80 80 െ 0.5P 

ሺ𝑏ሻ 

Solution 
 
Placement of imaginary force 𝑃. The force 𝑃 is placed at point A, where the deflection is desired, 
as shown in Figure 8.12b. The x coordinates for the moment equations are also shown in this figure. 
 
Bending moment. Compute the support reactions and write the bending moment equations for 
segments AB and BC of the beam as a function of the force  𝑃. The x coordinates for the moment 

equations are also shown in Figure 8.12b. Compute the partial derivatives 
డெ

డ௉
, and then apply 

Castigliano’s equation 8.22 to compute the deflection. 
 
Segment AB. ሺ0 ൏ 𝑥ଵ ൏ 4ሻ 
 
 𝑀ଵ ൌ  െ𝑃𝑥ଵ 

 డெభ

డ௉
 ൌ  െ𝑥ଵ 

Segment BC. ሺ0 ൏ 𝑥ଶ ൏ 8ሻ 

𝑀ଶ ൌ  ሺ80 െ 0.5𝑃ሻ𝑥ଶ െ 10𝑥ଶ
ଶ 

డெమ

డ௉
 ൌ  െ0.5𝑥ଶ 



Setting P = 40 kN and applying Castigliano’s theorem suggests the following: 

                        ∆஺ൌ ׬  ൫ಾ
ಶ಺

൯൫ങಾ
ങು

൯𝑑𝑥
௅

଴  

                        ∆஺ൌ ׬  ൫షరబೣభ
ಶ಺

൯ሺെ𝑥ଵሻ𝑑𝑥 ൅ ׬ ቀభబబೣమషభబೣమ
మ

ಶ಺
ቁ ሺെ0.5𝑥ଶሻ𝑑𝑥

଼
଴

ସ
଴  

                            ൌ  షమఱలబ ౡొ .  ౣయ

ಶ಺
  ୀ  షమఱలబ ౡొ.  ౣయ

൫మబబൈభబల ౡొ/ౣమ൯൫ఴబబൈభబలౣౣర൯൫భబషభమౣర/ౣౣర൯
  ൌ  െ0.016 m 

                              ∆஺ ൌ  16 mm ↑   

 

 

 

 

 

Example 8.10 

Using Castigliano’s second theorem, determine the rotation of joint C of the frame shown in Figure 
8.13a. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Placement of imaginary couple 𝑀ᇱ. The couple force 𝑀ᇱ is placed at point C, where the rotation is 
desired, as shown in Figure 8.13b. 

8 ft 

10 ft 

𝐷 

𝐶 𝐵 

4 kips/ft 

𝐴 

2 kips/ft 

Fig. 8.13. Frame. 

ሺ𝑎ሻ 

𝐷

𝐶 𝐵

4 kips/ft 

𝐴 

2 kips/ft 

Mᇱ

20 kips 

28.5 ൅ 0.125Mᇱ 3.5 ൅ 0.125Mᇱ 

𝑥ଵ 

𝑥ଶ 

𝑥ଷ 

ሺ𝑏ሻ 

Solution 



 
Bending moment. Compute the support reactions and write the bending moment equations for the 
columns AB and DC and the beam BC of the frame as a function of the couple 𝑀ᇱ. Compute the 

partial derivatives 
డெ

డெ
, and then apply Castigliano’s equation 8.25 for the computation of rotation. 

 
Column AB. ሺ0 ൏ 𝑥ଵ ൏ 10ሻ 
𝑀ଵ ൌ  െ20𝑥ଵ 

డெభ

డெᇲ  ൌ  0 

 

Beam BC. ሺ0 ൏ 𝑥ଶ ൏ 8ሻ 

𝑀ଶ ൌ  ሺ28.5 ൅ 0.125Mᇱሻ𝑥ଶ െ 2𝑥ଶ
ଶ 

డெమ

డெᇲ  ൌ  0.125𝑥ଶ 

 

Column DC. ሺ0 ൏ 𝑥ଷ ൏ 10ሻ 

𝑀ଷ  ൌ  െ𝑥ଷ
ଶ 

ങಾయ
ങಾᇲ  ൌ  0  

Setting 𝑀ᇱ  ൌ  16 k . ft and applying Castigliano’s theorem suggests the following:  

                        𝜃஺ ൌ ׬  ൫ಾ
ಶ಺

൯൫ ങಾ
ങಾᇲ൯𝑑𝑥

௅
଴  

                        𝜃஺ ൌ ׬  ൫షమబೣభ
ಶ಺

൯ሺ0ሻ𝑑𝑥
ଵ଴

଴ ൅ ׬ ቀమఴ.ఱೣమషమೣమ
మ

ಶ಺
ቁ ሺ0.125𝑥ଶሻ𝑑𝑥 ൅ ׬ ቀషೣయ

మ

ಶ಺
ቁ ሺ0ሻ𝑑𝑥

ଵ଴
଴

଼
଴  

                             ൌ  యఱభ.ఱళ ౡ .  ౜౪మ

ಶ಺
  ୀ  యఱభ.ఱళሺభమሻమ 

ሺమవబబబሻሺభబబሻ  = 0.017 rad 

                              𝜃஺ ൌ  0.017 rad                  

 

 

8.2.2 Energy Method Formulation for Trusses 
 
Equation 8.18 can be mathematically manipulated to include axial force, as follows: 
 
                                              ∆ ൌ ങೆ

ങು
ൌ  ങೆ

ങಿ
ൈ ങಿ

ങು
                                                                      ሺ8.26ሻ    

 
The total internal work done or strain energy stored in members of a truss due to gradually 
applied external loads is as follows: 
 



                                             𝑊 ൌ  𝑈 ൌ  ∑ ಿమಽ
మಲಶ

                                                                       ሺ8.27ሻ  
 
The partial derivative of equation 8.27, with respect to the axial load, is as follows: 
 
                                             ങೆ

ങಿ
ൌ  ∑ మಿಽ

మಲಶ
 ൌ  ∑ ಿಽ

ಲಶ
                                                                    ሺ8.28ሻ  

 
To determine the deflection at any joint of a truss, use the energy method by substituting 
equation 8.28 into equation 8.26 to obtain the following equation:  
 
 
                                                                                                                                                 ሺ8.29ሻ    
 
                             
where  
 
𝑁 ൌ internal axial force in each member due to external load. 
ങಿ
ങು

 ൌ axial force in each member due to unit load applied at the joint and in the direction 
          of the required deflection. 
𝐿 ൌ length of member. 
𝐴 ൌ area of a member. 
𝐸 ൌ modulus of elasticity of a member.   
 
 
 
 
 
          Example 8.11 
 

Using Castigliano’s second theorem, determine the horizontal deflection at joint C of the truss 
shown in Figure 8.14a. 

 

 

 

 

 

 

 

 
 
 

10 ft 

A 
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B 

10 ft 

30 k 

Fig.  8.14. Truss. 

ሺ𝑎ሻ Actual truss 

10 ft 

A
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ሺ𝑏ሻ Truss for computing ∆௖ 

P P 

∆ ൌ  ෍ ቀே௅
஺ா

ቁ ቀడே
డ௉

ቁ 



 
 
 
 
 

Solution 
 
Placement of imaginary force 𝑃. The force 𝑃 is placed as a replacement for the 30k force at point 
C, where the horizontal deflection is desired, as shown in Figure 8.14b.  
 
Member axial forces. Compute the support reactions and obtain the member-axial forces in terms 
of the imaginary force P. Member-axial forces are determined by using the method of joint, as 

shown below. To find the horizontal deflection at C, compute the partial derivatives 
డெ

డ௉
 and apply 

Castigliano’s equation 8.22. Member lengths, axial forces, and partial derivatives with respect to 
the fictitious force 𝑃 are shown in Table 8.8. 
 
Analysis of truss (fig. 8.14b). 
 
Joint A. 
 

൅↑ ෍ 𝐹௬ ൌ  0 

𝑁஺஻ െ 𝑃 ൌ  0  
𝑁஺஻ ൌ  𝑃 
 

൅→ ෍ 𝐹௫ ൌ  0 

𝑁஺஽ െ 𝑃 ൌ  0  
𝑁஺஽ ൌ  𝑃 
 
Joint B. 
 

൅↑ ෍ 𝐹௬ ൌ  0 

െ𝑁஻஺ െ 𝑁஻஽ 𝑐𝑜𝑠45° ൌ  0  
𝑁஻஽ ൌ  െ ேಳಲ

௖௢௦ ସହ°
 ൌ  െ ௉

௖௢௦ ସହ°
 ൌ  െ1.41𝑃 

 

൅→ ෍ 𝐹௫ ൌ  0 

𝑁஻஼ ൅ 𝑁஻஽ 𝑐𝑜𝑠45° ൌ  0  
𝑁஻஼ ൌ െ𝑁஻஽ 𝑐𝑜𝑠45° ൌ  െሺെ1.41𝑃ሻ𝑐𝑜𝑠45° ൌ  𝑃 
 
Joint C. 
 

൅↑ ෍ 𝐹௬ ൌ  0 

𝑁஺஽ 

𝑁஺஻ 

P 

P 
A 

𝑁஻஼ B 

𝑁஻஽ 𝑁஻஺ 

45° 

𝑁஼஻ 

𝑁஼஽ 

C P 



𝑁஼஽ ൌ  0  
 

൅→ ෍ 𝐹௫ ൌ  0 

െ𝑁஼஻ ൅ 𝑃 ൌ  0  
𝑁஼஻ ൌ  𝑃 
 
 
Table 8.8. Member lengths, axial forces, and partial derivatives with respect to the fictitious 
force 𝑃. 

Member  𝐿ሺftሻ 
ሺftሻ 

𝑁ሺkipሻ 
ሺkipሻ 

డே
డ௉

 

ሺkip/kipሻ 

𝑁ሺ𝑃 ൌ 30𝑘ሻ 
ሺkipሻ 

𝑁ሺ𝜕𝑁/𝜕𝑃ሻ𝐿 
ሺkip. ftሻ 

AB 10 P 1 30 300 
AD 10 P 1 30 300 
BC 10 P 1 30 300 
BD 14.14 -1.14P -1.14 -34.2 551.29 
CD 10 0 0 0 0 
                                                                                                                  ∑ 𝑁൫ങಿ

ങು
൯ 𝐿 ൌ  1451.29 

 

          ∆௖ൌ  భ
ಶಲ

∑ 𝑁൫ങಿ
ങು

൯ 𝐿 ൌ  భరఱభ.మవ
ಶಲ

 k. ft ൌ  భరఱభ.మవሺభమሻ
ሺమవ,బబబሻሺబ.లሻ  ൌ  0.083ft ൌ  1 in                      ∆௖ൌ  1 in →   

 
 

 

 Example 8.12 

 

Using Castigliano’s second theorem, determine the vertical deflection at joint F of the truss shown 
in Figure 8.15a.. Members have the same cross-sectional area of 600 mmଶ and 𝐸 ൌ 200 GPa. 

 

 

 

 

 

 

 
 
 
 

3 m 

100 kN 
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Fig.  8.15. Truss. 

ሺ𝑎ሻ Actual truss 
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100 kN 

A 
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P
50 ൅ 0.5𝑃

ሺ𝑏ሻ Truss for computing ∆ி 



 
 

Solution 
 
Placement of imaginary force P. The force 𝑃 is placed at joint F, where the vertical deflection is 
desired, as shown in Figure 8.15b.  
 
Member axial forces. Compute support reactions and obtain member-axial forces in terms of the 
imaginary force P. Member-axial forces are determined by using the method of joint, as shown 

below. To find the vertical deflection at F, compute the partial derivatives 
డெ

డ௉
 and apply 

Castigliano’s equation 8.22. Member lengths, axial forces, and partial derivatives with respect to 
the fictitious force 𝑃 are shown in Table 8.9. 
 
Analysis of truss (fig. 8.15b).  
 
Joint A. 
 

൅↑ ෍ 𝐹௬ ൌ  0 

𝑁஺஻ ൅ 50 ൅ 0.5𝑃 ൌ  0  
𝑁஺஻ ൌ  െ50 െ 0.5𝑃 
 

൅→ ෍ 𝐹௫  ൌ  0 

𝑁஺ி  0  
 
Joint B. 
 

൅↑ ෍ 𝐹௬ ൌ  0 

െ𝑁஻஺ െ 𝑁஻ி 𝑐𝑜𝑠45° ൌ  0  
𝑁஻ி ൌ  െ ேಳಲ

௖௢௦ ସହ°
 ൌ  െሺିହ଴ି଴.ହ௉ሻ

௖௢௦ ସହ°
 ൌ  70.71 ൅ 0.7071𝑃 

 

൅→ ෍ 𝐹௫  ൌ  0 

𝑁஻஼ ൅ 𝑁஻ி 𝑐𝑜𝑠45° ൌ  0  
𝑁஻஼  ൌ  െ𝑁஻ி 𝑐𝑜𝑠45° ൌ  െሺ70.71 ൅ 0.7071𝑃ሻ 
  
Joint C. 
 

൅↑ ෍ 𝐹௬ ൌ  0 

െ𝑁஼ி െ 100 ൌ  0  
𝑁஼ி ൌ  െ100 𝑘𝑁 
 

𝑁஺ி 

𝑁஺஻ 

A 

50 ൅ 0.5𝑃 

𝑁஻஼ B

𝑁஻ி 𝑁஻஺

45° 

𝑁஼஻ 

𝑁஼ி 

C 𝑁஼஽ 

100 kN 



൅→ ෍ 𝐹௫ ൌ  0 

െ𝑁஼஻ ൅ 𝑁஼஽ ൌ  0  
𝑁஼஽ ൌ 𝑁஼஻  ൌ  െሺ70.71 ൅ 0.7071𝑃ሻ 
 
Table 8.9. Member lengths, axial forces, and partial derivatives with respect to the fictitious 
force 𝑃. 

Member 𝐿 
ሺmሻ 

𝑁 
ሺkNሻ 

డே
డ௉

 

ሺkN/kNሻ 

𝑁ሺ𝑃 ൌ 0ሻ 
ሺkNሻ 

𝑁ሺ𝜕𝑁/𝜕𝑃ሻ𝐿 
ሺkN. mሻ 

AB 3 െ50 െ 0.5𝑃 െ0.5 -50 75 
AF 3 0 0 0 0 
BC 3 -70.71-0.7071𝑃 െ0.7071 -70.71 150 
BF 4.24 70.71 ൅ 0.7071𝑃 0.7071 70.71 212 
CF 3 100 0 100 0 
CD 3 -70.71-0.7071𝑃 െ0.7071 -70.71 150 
DF 4.24 70.71 ൅ 0.7071𝑃 0.7071 70.71 212 
DE 3 െ50 െ 0.5𝑃 െ0.5 -50 75 
EF 3 0 0 0 0 
                                                                                                                         ∑ 𝑁൫ങಿ

ങು
൯ 𝐿 ൌ 874 

 

          ∆௖ൌ  భ
ಶಲ

∑ 𝑁൫ങಿ
ങು

൯ 𝐿 ൌ  ఴళర
ಶಲ

 kN. m ൌ  భరఱభ.మవሺభమሻ
ሺమవ,బబబሻሺబ.లሻ  ൌ  0.083ft ൌ  1 in                      ∆௖ ൌ  1 in →  

 
             
 

Principle of virtual work: The principle of virtual work states that if a body acted upon by several 
external forces is in a state of equilibrium and is subjected to a small virtual displacement, the 
virtual work done by the externally applied forces is zero. This principle can be expressed 
mathematically, as follows:                    

                                                𝑊௘ ൌ 𝑊௜ 

The expressions for the determination of deflection by virtual work method for beams and trusses 
are as follows:                   

                                Beams and Frames:               1ሺ∆ሻ  ൌ ׬  ಾ೘ೡ
ಶ಺

௅
଴ 𝑑𝑥 

                                                   Trusses:              1ሺ∆ሻ  ൌ  ∑ 𝑛௜ ቀಿ೔ಽ೔
ಲ೔ಶ೔

ቁ 

Principle of conservation of energy: The principle of conservation of energy states that the work 
done by external forces acting on an elastic body in equilibrium are equal to the strain energy 
stored in the body. This principle can be expressed mathematically, as follows: 
 

 Chapter Summary 



                                                         Wሺ𝑜𝑟 𝑈௘ሻ ൌ  𝑈௜ 

The energy method for the determination of deflection is based on Alberto Castigliano’s second 
theorem. The theorem states that the deflection in a specified direction and at a specified point in 
a linear elastic structure subjected to a given force is equal to the partial derivative of the total 
external work or the total internal energy with respect to the applied force. The expressions for the 
determination of deflection by Castigliano’s second theorem for beams and trusses are as follows:  
                          
                           Beams and Frames:        ∆ ൌ ൫ಾ׬ 

ಶ಺
൯ ൫ങಾ

ങು
൯𝑑𝑥 

       

                                             Trusses:        ∆ ൌ  ∑൫ಿಽ
ಲಶ

൯൫ങಿ
ങು

൯ 

 

 Practice Problems 

8.1 Using the virtual work method, determine the slope and deflection at point A of the cantilever 
beams shown in Figure P8.1 and Figure P8.2. 
 
 
 
 
 
 
 
 
  Fig.  P8.1. Cantilever beam. 

𝐴 𝐵 
12 ft 

150 k.ft 

4 k/ft 

 
 
 
8.2 Determine the deflection at point D of the beams shown in Figure P8.3 and Figure P8.4. 
 

Fig. P8.2. Cantilever beam. 

𝐴 𝐵

4 m 

450 kN/m 

 
 
 
 
 
 
 
 
 
 Fig.  P8.3. Beam. 

30 kN/m 

𝐷𝐴 
𝐵 

2 m 2 m 1.5 m 

𝐶 

46 kN 

 
8.3 Using the energy method, determine the slope at support B of the beams shown in Figure 
P8.5 and Figure P8.6. 

Fig. P8.4. Beam. 

4 ft 

𝐴
𝐵

6 ft 

2 kips/ft 

6 ft 

𝐶 
𝐷

150 kips 



 
 
 
 
 
 
 
 
 
 
 
 

150 kN 
24 kN/m 

A 

2 m 0.5 m 0.5 m 

B 
D 

1 m 

C 

Fig.  P8.5. Beam. 

 
 

8.4 Using the virtual work method, determine the deflection at point H of the trusses shown in 
Figure P8.7 through Figure P8.10. 

 

Fig. P8.6. Beam. 

20 kN/m 

𝐴
𝐵 

𝐶 

3 m 7 m 

10 kN/m 

 

 

 

 

 

 

20 kN 40 kN 60 kN 80 kN 

3 at 3 m ൌ 9 m 

3 m 

A 

B C D E 

F G H 

Fig.  P8.7. Truss. 

 

100 kips 

80 kips 

3 at 12 ft ൌ 36 ft 

10 ft 

A

B C D E 

F G H 

Fig. P8.8. Truss. 

 

 

 

 

 

 

 

2 kN 6 kN 10 kN 14 kN 
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B C D E
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Fig.  P8.9. Truss. 

10 kips 20 kips 20 kips 10 kips 

3 at 16 ft ൌ 48 ft 

12 ft 
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F 
G H 

60° 60° 60° 60°

Fig. P8.10. Truss. 



8.5 Using the energy method, determine the deflection at point F of the trusses shown in Figure 
P8.11 and Figure P8.12. 

 

 

 

 

 

 

 

 

10 kN 50 kN 

3 at 4 m ൌ 12 m 

5 m 

A B C 

D E F 

Fig.  P8.11. Truss. 

8.6 Using the virtual work method, determine the horizontal deflection at joint C of the trusses 
shown in Figure P8.13 and Figure P8.14. 
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Fig. P8.12. Truss. 
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Fig.  P8.13. Truss. 
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Fig. P8.14. Truss. 



Chapter 9 

Influence Lines for Statically Determinate Structures 
 
9.1 Introduction 
 
Structures such as bridges and overhead cranes must be designed to resist moving loads as well as 
their own weight. Since structures are designed for the critical loads that may occur in them, 
influence lines are used to obtain the position on a structure where a moving load will cause the 
largest stress. Influence lines can be defined as a graph whose ordinates show the variation of the 
magnitude of a certain response function of a structure as a unit load traverses across the structure. 
Response functions of a structure may include axial forces in members, support reactions, bending 
moments, shear forces, and deflection at specific points in the structure. 
 
It is very important to emphasize the need for students to fully grasp the afore-stated definition, 
since most of the confusion and difficulty encountered when drawing influence lines stems from 
a lack of understanding of the difference between this topic and the bending moment and shearing 
force topics detailed in chapter four. A shearing force or bending moment diagram shows the 
magnitude of the shearing force or bending moments at different points of the structure due to the 
static or stationary loads that are acting on the structure, while the influence lines for certain 
functions of a structure at a specified point of the structure show the magnitude of that function at 
the specified point when a unit moving load traverses across the structure. The influence lines of 
determinate structures can be obtained by the static equilibrium method or by the kinematic or 
Muller-Breslau method. Influence lines by the static equilibrium method are referred to as 
quantitative influence lines, as they require some calculations, while those by kinematic method 
are known as the qualitative influence lines, as the method enables the analyzer to obtain the 
correct shape of the influence lines without any quantitative efforts. In the subsequent sections, 
students will consider how to construct the influence lines for beams and trusses using these two 
methods.  
 

9.2 Influence Lines for Statically Determinate Beams by Static Equilibrium 
Method 
 
To grasp the basic concept of influence lines, consider the simple beam shown in Figure 9.1a. 
Statics help to determine the magnitude of the reactions at supports A and B, and the shearing force 
and bending moment at a section n, as a unit load of arbitrary unit, moves from right to left.  
 
 
 
 
 
 
 

𝐿 

𝑃 ൌ 1

𝐵 
𝑛

𝑏𝑎 

𝑥

Fig.  9.1a. Simple beam.    



9.2.1 Beam Reactions 
Taking the moment about B as the unit load moves a distance 𝑥 from the right-hand end suggests 
the following: 
 
  
                     ൅ ∑ 𝑀஻ ൌ  0 
                     െ𝑅஺𝐿 ൅ 𝑃𝑥 ൌ  0 
                    𝑅஺ ൌ  ುೣ

ಽ
                                                                                                                 (9.1) 

         
Setting 𝑃 ൌ  1 suggests the following: 
 
 
                                                                                                                                                    (9.2) 
                  
                     
Equation 9.2 is the expression for the computation of the influence line for the left-end reaction 
of a simply supported beam. The influence line for 𝑅஺ can be represented graphically by putting 
some values of x into the equation. Since the equation is linear, two points should be enough. 
 
                             When 𝑥 ൌ 0, 𝑅஺ ൌ  0 
                             When 𝑥 ൌ  𝐿, 𝑅஺ ൌ  1 
 
The graphical representation of the influence line for 𝑅஺ is shown in Figure 9.1b, and the ordinate 
of the diagram corresponding to any value of 𝑥 gives the magnitude of 𝑅஺ at that point. 
 
 
 
 
 
 
 
 
 
 
 
Similarly, the expression for the influence line for the reaction 𝑅஻ is found by taking the moment 
about A. 
 
             ∑ 𝑀஺ ൌ  0 
              𝑅஻𝐿 െ 𝑃ሺ𝐿 െ 𝑥ሻ  ൌ  0 
              𝑅஻ ൌ  ುሺಽషೣሻ

ಽ
                                                                                                                   (9.3) 

              
Setting 𝑃 ൌ  1 into equation 9.3 suggests the following:   
 
 

𝑅஺ ൌ ௫
௅
 

0 
Fig. 9.1b. Influence line for 𝑅஺.

𝐿 

1 

𝑥

𝑦 



 
                                                                                                                                                    (9.4)        
 
                                           
Equation 9.4 is the expression for the computation of the influence line for the right-end reaction 
of a simply supported beam. Substituting some values for x into the equation helps to construct the 
influence line diagram for 𝑅஻.     
     
                           When 𝑥 ൌ  0, 𝑅஻ ൌ  1 
                           When 𝑥 ൌ  𝐿, 𝑅஻ ൌ  0 
 
The graphical representation of the influence line for 𝑅஻ is shown in Figure 9.1c. 
 
 
 
 
 
 
 
 
 
 

𝐿

1

0 
𝑥 

𝑦 

Fig. 9.1c. Influence line for 𝑅஻.

9.2.2 Shearing Force at Section 𝑛 
 
When the unit load is on the right side of the section, the shear force at the section can be computed 
considering the transverse forces on the left side of the section, as follows: 
 
                            Shearing force, 𝑉 ൌ  𝑅஺  ൌ  ೣ

ಽ
 

                            When 𝑥 ൌ  0, 𝑉 ൌ  0  
                            When 𝑥 ൌ  𝑏, 𝑉 ൌ  ್

ಽ
                           

 
When the unit load is on the left side of the section, it is easier to compute the shear force in the 
section by considering the forces on the right side of section, as follows: 
                                                                       
                                𝑉 ൌ  െ𝑅஻ ൌ  െሺ𝑳ష𝒙ሻ

𝑳
  

                               When 𝑥 ൌ  𝑏, 𝑉 ൌ  െሺಽష್ሻ
ಽ

  ୀ  ି ೌಽ 
                               When 𝑥 ൌ  𝐿, 𝑉 ൌ  0 
  
The graphical representation of the influence line for the shearing force at a section n of the simple 
beam is shown in Figure 9.1d. 
 
 
 
 
 

𝑅஻ ൌ ሺ௅ି௫ሻ
௅

 



 
 
 
 
 
 
 
 
 
 

𝐿

𝑦 

௕
௅
 

𝑥 0 
௔
௅
 

Fig. 9.1d. Influence line for shear at section n.

9.2.3 Bending Moment at a Section 𝑛 
                         
When the unit load is on the right side of the section, the bending moment at the section can be 
computed as follows: 
 
                                𝑀 ൌ  𝑅஺ሺ𝐿 െ 𝑥ሻ  ൌ  ೣ

ಽ
ሺ𝐿 െ 𝑥ሻ 

                                When 𝑥 ൌ  0, 𝑀 ൌ  0 
                                When 𝑥 ൌ  𝑏, 𝑀 ൌ  ೌ್

ಽ
 

 
When the unit load is on the left side of section, the bending moment at the section can be computed 
as follows:   
 
                              𝑀 ൌ  𝑅஻𝑥 ൌ  ሺಽషೣሻ

ಽ
𝑥 

                               When 𝑥 ൌ  0, 𝑀 ൌ  0 
                               When 𝑥 ൌ  𝑏, 𝑀 ൌ ೌ್

ಽ
 

 
The graphical representation of the influence line for the bending moment at a section n of the 
simple beam is shown in Figure 9.1e. 
 
 
 
 
 
 
 
 
 
 

𝑦 
௔௕
௅

 

𝐿 0 𝑥 

Fig. 9.1e. Influence line for moment at section n. 

9.3 Construction of Influence Lines  
 
In practice, influence lines are mostly constructed, and the values of the functions are determined 
by geometry. The procedure for the construction of influence lines for simple beams, compound 
beams, and trusses will be outlined below and followed by a solved example to clarify the problem. 
For each case, one example will be solved immediately after the outline. 
 



9.3.1 Simple Beams Supported at Their Ends 
 
The procedures for the construction of the influence lines (I.L.) for some functions of a beam 
supported at both ends are as follows: 
 
9.3.1.1 Influence Line for Left End Support Reaction, 𝑅஺ (Fig. 9.2) 
 

(a) At the position of the left end support (point 𝐴), along the y-axis, plot a value ൅1 (point 
𝐴ᇱ). 
 

(b) Draw a line joining point 𝐴ᇱ and the zero ordinate at point B. Point B is at the position of 
support B.  

 
(c) The triangle 𝐴𝐴ᇱ𝐵 is the influence line for the left-end support reaction. The idea here is 

that when the unit load moves across the beam, its maximum effect on the left-end reaction 
will be when it is directly lying on the left end support. As the load moves away from the 
left end support, its influence on the left end reaction will continue to diminish until it gets 
to the least value of zero, when it is lying directly on the right end support.  

 
 
 
 
 
 
 
 

𝐴 
Fig. 9.2. Influence line for 𝑅஺.

𝐵

1 
𝑥

𝐴ᇱ 

9.3.1.2 Influence Line for Right End Support Reaction 𝑅஻ (Fig. 9.3) 
 

(a) At the right end support (point B), plot an ordinate of value +1 (point 𝐵ᇱ). 
 

(b) Draw a line joining point 𝐵ᇱ and point A. 
 

(c) The triangle 𝐴𝐵ᇱ𝐵  is the influence line for the right end support reaction. The explanation 
for the influence line for the right end support reaction is similar to that given for the left 
end support reaction. The maximum effect of the unit load occurs when it is lying directly 
on the right support. As the load moves away from the right end support, its influence on 
the support reaction decreases until it is zero, when the load is directly lying on the left 
support. 

 
 
 
 
 
 
 

𝐵
1 

𝐴 
Fig. 9.3. Influence line for 𝑅஻.

𝐵ᇱ



 
 
 
9.3.1.3 Influence Line for Shearing Force at Section n 
 

(a) At the left end support (point A), plot an ordinate equal +1 (point 𝐴ᇱሻ, as shown in Figure 
9.4b. 
 

(b) Draw a line joining point 𝐴ᇱ and the zero ordinate at point B. 
 

(c) At the right end support (point B), plot an ordinate equal –1 (point 𝐵ᇱ). 
 

(d) Draw a line joining 𝐵ᇱ and the zero ordinate at point A. 
 

(e) Drop a vertical line from the section under consideration to cut lines 𝐴ᇱ𝐵 and 𝐴𝐵ᇱat points  
      𝑁ᇱand 𝑁′ᇱ, respectively. 
 

(f) The diagram 𝐴𝐵𝑁ᇱ𝑁′ᇱ is the influence line of the shear force at the section n. 
 

(g) Use a similar triangle to determine the ordinates n-N’ and n-N,’’ as follows:  
 
           భ

ಽ
ൌ ೙షಿᇲ

್
 → ேᇲ ୀ ್ಽ 

 
          షభ

ಽ
ൌ  ೙షಿᇲᇲ

ೌ
 →  𝑁ᇱᇱ  ൌ  െ ೌ

ಽ
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Fig.  9.4. Influence line for shear ሺ𝑏ሻand moment ሺ𝑐ሻ at secton 𝑚. 
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9.3.1.4 Influence Line for Bending Moment at Section n 
 

(a) At the left end support (point A), plot an ordinate of a value equal to the distance from the 
left end support to the section n. For example, the distance a in Figure 9.4c (denoted as 
point Y in Figure 9.4c). 

 
(b) Draw a line joining point Y and the zero ordinate at point B at the right end support. 
 
(c) Draw a vertical line passing through section n and intersecting the line AZ at point Q. 
 
(d) Draw a straight line AQ connecting A and Q. 
 
(e) The triangle AQB is the influence line for the moment at section n. Alternatively, ignore 
steps (b), and (c) and (d) and go to step (f). 

 
(f) At the right end support (point B), plot an ordinate equal +b. For example, the distance from 
the right end support to the section n (denoted as point Z).  

 
(g) Draw a line joining Z and the zero ordinate at A (position of the left end support). 

 
(h) At the left end support (point A), plot an ordinate equal +a. For example, the distance from 
the left end support to the section n (denoted point Y).  

 
(i) Draw a line joining Y and the zero ordinate at B (position of the right end support). 

 
(j) Lines AZ and BY intersect at Q. 

 
(k) The triangle AQB is the influence line for the moment at section n. If accurately drawn,  
with the right sense of proportionality, the intersection Q should lie directly on a vertical line 
passing through the section n. 

 
(l) The value of the ordinate nQ can be obtained using a similar triangle, as follows: 
 

                    ೌ
ಽ

 ൌ  ೙ೂ
್

 → 𝑛𝑄 ൌ  ೌ್
ಽ

 
    
             or   ್

ಽ
 ൌ  ೙ೂ

ೌ
 → 𝑛𝑄 ൌ  ೌ್

ಽ
 

 
 
 
 Example 9.1 

For the double overhanging beam shown in Figure 9.5a, construct the influence lines for the 
support reactions at B and C and the shearing force and the bending moment at section n. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.  9.5. Double overhanging beam. 

4 m 2 m 

𝐵 𝐶

4 m 2 m 

𝐴 𝐷 𝑛

ሺ𝑎ሻ 

ሺ𝑏ሻ 

1 
2 

1

൅ 

െ Influence line for reaction 𝐵௬ 𝐴 𝐵 𝐶 
𝐷 

1 
2

1 

൅ 

െ 
Influence line for reaction 𝐶 𝐴 

𝐵 𝐶 𝐷

ሺ𝑐ሻ 

൅ ൅
െെ 

0.5

0.5

1 

1 
Influence line for shear 𝑉௡ 𝐴 𝐵 𝐶

𝐷

ሺ𝑑ሻ

െ 

൅ 1

2 2 
െ

Influence line for moment 𝑀௡ 

ሺ𝑒ሻ 

𝐴 𝐵 𝐶 𝐷

 

 
Solution 
 
I.L. for By. 

 
Step 1.  At the position of support B (point B), plot an ordinate ൅1. 
 
Step 2. Draw a straight line connecting the plotted point ሺ൅1ሻ to the zero ordinate at the position 
of support C. 
 



Step 3. Continue the straight line in step 2 until the end of the overhangs at both ends of the 
beam. The influence line for 𝐵௬ is shown in Figure 9.5b. 
 
Step 4. Determine the ordinates of the influence line at the overhanging ends using a similar 
triangle, as follows: 
 
Ordinate at A: 
 
               భ

ಳ಴
 ൌ  ೣ

ಲ಴
 ;  ⇒ 𝑥 ൌ  ಲ಴

ಳ಴
 ൌ  ఴ

ర
 ൌ  2 m     

                      
Ordinate at D: 
 
               భ

ಳ಴
 ൌ  ೣ

಴ವ  
;  ⇒ 𝑥 ൌ  ಴ವ

ಳ಴
 ൌ  ర

ర
 ൌ  1 m 

 
I.L. for Cy. 
 
Step 1.  At the position of support C (point C), plot an ordinate ൅1. 
 
Step 2. Draw a straight line connecting the plotted point ሺ൅1ሻ to the zero ordinate at the position 
of support B. 
 
Step 3. Continue the straight line in step 2 until the end of the overhangs at both ends of the 
beam. The influence line for 𝐵௬ is shown in Figure 9.5c. 
 
Step 4. Determine the ordinates of the influence line at the overhanging ends using a similar 
triangle, as follows: 
 
Ordinate at D: 
 
               భ

ಳ಴
 ൌ  ೣ

ಳವ
 ;  ⇒ 𝑥 ൌ  ಳವ

ಳ಴
 ൌ  ఴ

ర
 ൌ  2 m     

                      
Ordinate at A: 
 
               ೣ

ಲಳ
 ൌ  భ

ಳ಴  
;  ⇒ 𝑥 ൌ  ಲಳ

ಳ಴
 ൌ  ర

ర
 ൌ  1 m 

 
I.L. for shear Vn. 
 
Step 1.  At the position of support B (point B), plot an ordinate ൅1. 
 
Step 2. Draw a straight line connecting the plotted point ሺ൅1ሻ to the zero ordinate at the position 
of support C. Continue the straight line at C until the end of the overhang at end D.  
 
Step 3. At the position of support C (point C), plot an ordinate െ1. 
 
Step 4. Draw a straight line connecting the plotted point ሺെ1ሻ to the zero ordinate at the position 
of support B. Continue the straight line at B until the end of the overhang at end A. 



 
Step 5. Draw a vertical passing through the section whose shear is required to intersect the lines 
in step 2 and step 3.  
 
Step 6. Connect the intersections to obtain the influence line, as shown in Figure 9.5d. 
 
Step 7. Determine the ordinates of the influence lines at other points by using similar triangles, as 
previously demonstrated. 
 
I.L. for Moment Mn. 

 
Step 1. At point B, plot the ordinate equal ൅2 m. 
 
Step 2. Draw a straight line connecting the plotted ordinate in step 1 to the zero ordinate in 
support C. 
 
Step 3. At point C, plot the ordinate equal ൅2 m.  
 
Step 4. Draw a straight line connecting the plotted ordinate in step 3 to the zero ordinate at 
support B. 
 
Step 5. Continue the straight lines from the intersection of the lines drawn in steps 2 and 4 
through the supports to the overhanging ends, as shown in Figure 9.5e.  
 
Step 6. Determine the values of the influence lines at other points using similar triangles, as 
previously demonstrated. 
 
 
 
 
 
 
 

Example 9.2 

For the beam with one end overhanging support B, as shown in Figure 9.6, construct the influence 
lines for the bending moment at support B, the shear force at support B, the support reactions at B 
and C, and the shearing force and the bending moment at a section “k.” 
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Fig.   9.6. Beam with one overhanging support. 
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Solution 
 
The influence lines in example 9.2 for the desired functions were constructed based on the 
procedure described in the previous section and example. 
 

 
9.3.2 Compound Beams 
 
To correctly draw the influence line for any function in a compound beam, a good understanding 
of the interaction of the members of the beam is necessary, as was discussed in chapter 3, section 
3.3. The student should recall from the previous section that a compound beam is made up of the 
primary structure and the complimentary structure. The two facts stated below must always be 
remembered, since the extent of the spread of the influence line of compound beams depends on 
them. Remembering these facts will also serve as a temporary check to ascertain the correctness 
of the drawn influence line. 
 



The moving unit load will have an effect on the functions of the primary structure when it is located 
at any point, not only on the primary structure but also on the complimentary structure, since the 
latter constitutes a loading on the former. 
 
The moving unit load will have effect only on the functions of the complimentary structure when 
it is located within the complimentary structure; it will not have an effect on any function of the 
complimentary structure when it is at any point on the primary structure. 
 
The afore-stated facts will be demonstrated in the following examples.  
 
 Example 9.3 

 
For the compound beam shown in Figure 9.7, construct the influence lines and indicate the critical 
ordinates for the support reactions at A, B, and D, the bending moment at B, and the shear at hinge 
C. 
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Fig.  9.7. Compound beam. 
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Solution 
 
Prior to the construction of the influence lines for desired functions, it is necessary to first observe 
the extent of the influence lines through the schematic diagram of member-interaction, as shown 
in Figure 9.7b.  
 
I.L. for Ay. The reaction 𝐴௬ is a function in the primary structure, so the unit load will have 
influence on this function when it is located at any point on the beam, as was previously stated in 
section 9.3.2. With this understanding, construct the influence line of 𝐴௬, as follows: 
 
Step 1. At point A, plot an ordinate ൅1. 
 
Step 2. Draw a straight line connecting the plotted ordinate in step 1 to the zero ordinate in support 
B and continue this line until the end of the overhanging end of the primary structure, as shown in 
the interaction diagram. 
 
Step 3. Draw a straight line connecting the ordinate at the end of the overhang to the zero ordinate 
at support D. The influence line is as shown in Figure 9.7c. 
 
Step 4. Use a similar triangle to compute the ordinates of the influence line 
 
I.L. for By. The influence line for this reaction will cover the entire length of the beam because it 
is a support reaction in the primary structure. With this knowledge, construct the influence line for 
𝐵௬, as follows: 
 
Step 1: At point B, plot an ordinate ൅1. 
 
Step 2. Draw a straight line connecting the plotted ordinate in step 1 to the zero ordinate in support 
A. Continue the line in support B until the end of the overhanging end of the primary structure, as 
shown in the interaction diagram. 
 
Step 3. Draw a straight line connecting the ordinate at the overhanging end to the zero ordinate at 
support D. The influence line for 𝐵௬ is shown in Figure 9.7d. 
 
Step 4. Use a similar triangle to determine the values of the ordinate of the influence line. 
 



I.L. for Dy. The reaction 𝐷௬ is a function in the complimentary structure and will be influenced 
when the unit load lies at any point along the complimentary structure. It will not be influenced 
when the unit load transverses the primary structure, as was stated in section 9.3.2. Thus, the extent 
of the influence line will be the length of the complimentary structure. Knowing this, draw the 
influence line for  𝐷௬. 
 
Step 1. At point D, plot the ordinate ൅1. 
 
Step 2. Draw a straight line connecting the plotted ordinate in step 1 to the zero ordinate at hinge 
C. The influence line for 𝐷௬ is as shown in Figure 9.7e. 
 
The influence lines for the moment at B and the shear C are shown in Figure 9.7f and Figure 9.7g, 
respectively. 
 
 
 
 
 
 

Example 9.4 

For the compound beam shown in Figure 9.8a, construct the influence lines and indicate the 
critical ordinates for the support reactions at F and G, the shear force and bending moment at D, 
and the moment at F. 
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Fig.  9.8. Compound beam. 
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Solution 
 
Shown in Figure 9.8c through Figure 9.8g are the influence lines for the desired functions. The 
schematic diagram of the member interaction shown in Figure 9.8b immeasurably aids the initial 
perception of the range of the influence line of each function. Construction of the influence lines 
follows the description outlined in the previous sections.  
 
 
9.3.3 Influence Lines for Girders Supporting Floor Systems 
 
Thus far, the examples and text have only considered cases where the moving unit load is applied 
directly to the structure. But, in practice, this may not always be the case. For instance, sometimes 
loads from building floors or bridge decks are transmitted through secondary beams, such as 
stringers and cross beams to girders supporting the building or bridge floor system, as shown in 
Figure 9.9. Columns, piers, or abutments in turn support the girders.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Deck 
Stringer 
Floor beam 
Girder 
    

A 

A 

Section A‐A 

Fig. 9.9. Transfer of load to girder by system of stringers 
and floor beams. 

1 2 3 4 5

 
 
As shown in Figure 9.9, the vehicular load from the bridge deck is transferred to the girder at 
points 1, 2, 3, 4, and 5, referred to as panel points, where the floor beams are in contact with the 

 



girder. The segment between two successive contact points is known as a panel.  For an illustration 
of the construction of influence lines in a case of indirect application of loads, the floor beams and 
the girder of Figure 9.9 are separated from the entire system, as shown in Figure 9.10. Assume the 
length of each panel equals 4m. Construct the influence lines for the moment at point 4 and for the 
moment and shear at a section n at the midpoint of 3 and 4 (a point lying within panel 3-4). The 
influence line for the moment at point 4 is shown in Figure 9.10b; notice that the construction of 
the influence line for moment at this point is exactly like the cases considered in previous sections, 
where the moving load is applied directly to the beam. When the unit load moves to the right of 4 
and to the left of 3, the influence line for the moment for any section within panel 3-4 will be 
constant, as shown in Figure 9.10c. The construction of the influence line for the shear of any 
section within the panel 3-4 is obtained in the same manner as when the unit load is directly applied 
to the girder, with the exception that a diagonal line is drawn to connect the points where a vertical 
line drawn from the points intersect with the construction line.   
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Fig.  9.10. Influence lines in a case of indirect application of loads. 
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Example 9.5 

Draw the influence lines for the moment at C and the shear in panel BC of the floor girder shown 
in Figure 9.11. 
 
 
 
 
 
 
 
 

 
 

𝐴 𝐵 𝐶 𝐷
𝐸 

4 m 4 m 4 m 4 m 

Fig. 9.11a. Floor girder. 

Solution 
 
Influence line for M஼. To obtain the values of the influence line of 𝑀஼, successively locate a load 
of 1 kN at panel points A, B, C, D, and E. To determine the moment, use the equation of statics. 
The values of 𝑀஼ at the respective panel points are presented in Table 9.1. When the unit load is 
located at 𝐵, as shown in Figure 9.11b, the value of 𝑀஼ is determined as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
First, determine the support reactions in the beam using the equation of static equilibrium. 
 
 
                                         െ𝐴௬ሺ16ሻ ൅ 1ሺ12ሻ  ൌ  0                  𝐴௬ ൌ  0.75 kN 

 
 
                                         0.75 ൅ 𝐸௬ െ 1 ൌ  0                          𝐸௬ ൌ  0.25 kN 

 
 

൅↺ ෍ 𝑀ா ൌ 0 

൅↑ ෍ 𝐹௬ ൌ 0 

𝐴 𝐵 𝐶 𝐷
𝐸 

4 m 4 m 4 m 4 m 

Fig.  9.11b. Unit load at 𝐵. 

𝐴௬ 𝐸௬ 

1 kN 
𝑥  



Then, using the computed reaction, determine 𝑀஼, as follows:  
               

𝑀௖ ൌ  0.25ሺ12ሻ  ൌ  3 kN െ m 
 
 
 
Table 9.1. The values of 𝑀஼ at the respective panel points. 
 
 
𝑥ሺmሻ  

ReactionsሺkNሻ   
𝑀஼ሺkN. mሻ 𝐴௬  𝐸௬ 

0 
4 
8 
12 
16 

1 
0.75 
0.5 
0.25 
0 
 

0 
0.25 
0.5 
0.75 
1 

0 
0.25ሺ8ሻ ൌ 2 
0.5ሺ8ሻ ൌ 4 
0.25ሺ8ሻ ൌ2 
0 

 
 
Influence line for 𝑉஻஼. To obtain the values of the influence line of 𝑀𝑉஻஼, a load of 1 kN is 
successively located at panel points A, B, C, D, and E. To determine the shear force, use the 
equation of statics. The values of 𝑉஼ at the respective panel points are presented in Table 9.2. 
 
 
Table 9.2. The values of 𝑉஼ at the respective panel points. 
 
 
𝑥ሺmሻ  

ReactionsሺkNሻ   
𝑉஻஼ሺkNሻ 𝐴௬  𝐸௬ 

0 
4 
8 
12 
16 

1 
0.75 
0.5 
0.25 
0 
 

0 
0.25 
0.5 
0.75 
1 

0 
െ0.25 
0.5 
0.25 
0 

 

 

 

 
The procedure for the construction of influence lines for truss members is similar to that of a girder 
supporting a floor system considered in section 9.3.3. Loads can be transmitted to truss members 
via the top or bottom panel nodes. In Figure 9.12 the load is transmitted to members through the 
top panel nodes. As the live loads move across the truss, they are transferred to the top panel nodes 

𝑀஼ሺkN. mሻ

0

4 

2 

4 8 12 16
𝑥

Fig. 9.11c. Influence line for 𝑀஼.

𝑉஻஼ሺkNሻ

0 

5 

2.5 

4
8 12 16 𝑥 

Fig. 9.11d. Influence line for 𝑉஻஼. 
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൅ 

െ

9.3.4 Influence Lines for Trusses 



by cross beams and stringers. The influence lines for axial forces in truss members can be 
constructed by connecting the influence line ordinates at the panel nodes with straight lines. 
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Fig.  9.12.  Load transfered by system of stringers and cross beams.    
 
 
To illustrate the procedure for the construction of influence lines for trusses, consider the following 
examples. 
 
 
 
 

Example 9.6 

Draw the influence lines for the reactions 𝐴௬, 𝐹௬, and for axial forces in members CD, HG, and                         
CG as a unit load moves across the top of the truss, as shown in Figure 9.13. 
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Solution 
 
The drawing of the influence lines for trusses is similar to that of a beam. The first step towards 
drawing the influence lines for the axial forces in the stated members is to pass an imaginary 
section through the members, as shown in Figure 9.13b, and to apply equilibrium to the part on 
either side of the section. The step-by-step procedure for drawing the influence line for each of the 
members is stated below. 



 
Influence line for the axial force in member CD. When the unit load is situated at any point to the 
right of D, considering the equilibrium of the left segment AH (Fig. 9.13c), it suggests the 
following:  
 
 
                                      െ𝐴௬ሺ6ሻ െ 𝐹஼஽ሺ3ሻ  ൌ  0                  𝐹஼஽ ൌ  െ2𝐴௬ 

 
The obtained expression of 𝐹஼஽ in terms of 𝐴௬ is indicative of the fact that the influence line for 
𝐹஼஽ in the portion DE can be determined by multiplying the corresponding portion of the influence 
line for the reaction 𝐴௬ by െ 2. The influence line for 𝐴௬ is shown in Figure 9.13e. 
 
When the unit load is situated at any point to the left of C, considering the equilibrium of the right 
segment GF (Fig. 9.13d), it suggests the following: 
 
                                 𝐹௬ሺ3ሻ ൅ 𝐹஼஽ሺ3ሻ  ൌ  0                  𝐹஼஽ ൌ  െ𝐹௬ 

 
The obtained expression of 𝐹஼஽ in terms of 𝐹௬ is indicative of the fact that the influence line for 
𝐹஼஽ in the portion AH can be determined by multiplying the corresponding portion of the influence 
line for the reaction 𝐹௬ by െ 1. The influence line for  𝐹௬ is shown in Figure 9.13f. 
 
The influence line of the axial force in member CD constructed from the influence lines for the 
reactions 𝐴௬ and 𝐹௬ is shown in Figure 9.13g. 
 
Influence line for member HG. When the unit load is situated at any point to the right of D, 
considering the equilibrium of the left segment AH (Fig. 9.13c), it suggests the following: 
 
 
                                      െ𝐴௬ሺ3ሻ ൅ 𝐹ுீሺ3ሻ  ൌ  0                  𝐹ுீ ൌ  𝐴௬ 

 
The obtained expression of 𝐹ுீ in terms of 𝐴௬ implies that the influence line for 𝐹ுீ in the portion 
DE is identical to that of  𝐴௬ within the corresponding segment. 
 
When the unit load is situated at any point to the left of C, considering the equilibrium of the right 
segment GF (Fig. 9.13d), it suggests the following: 
 
 
                                 𝐹௬ሺ6ሻ െ 𝐹ுீሺ3ሻ  ൌ  0                  𝐹ுீ ൌ 2𝐹௬ 

 
The obtained expression of 𝐹ுீ in terms of 𝐹௬ is indicative of the fact that the influence line for 
𝐹ுீ in the portion AH can be determined by multiplying the corresponding portion of the influence 
line for the reaction 𝐹௬ by 2. 
 

൅↺ ෍ 𝑀ீ ൌ  0 

൅↺ ෍ 𝑀ீ ൌ 0 

൅↺ ෍ 𝑀௖ ൌ 0 

൅↺ ෍ 𝑀௖ ൌ 0 



The influence line of the axial force in member HG constructed from the influence line for the 
reactions 𝐴௬ and 𝐹௬ is also shown in Figure 9.13h. 
 
Influence line for the axial force in member CG. When the unit load is situated at any point to the 
right of D, considering the equilibrium of the left segment AH (Fig. 9.13C), it suggests the 
following:  
 
 

                                      𝐴௬ െ 𝐹஼ீ cos 45° ൌ  0              
                                                              𝐹஼ீ ൌ ಲ೤

ౙ౥౩రఱ° ൌ  1.41𝐴௬ 

 
The obtained expression of 𝐹஼ீ, with reference to 𝐴௬, implies that the influence line for 𝐹஼ீ in the 
portion DE can be determined by multiplying the corresponding portion of the influence line for 
the reaction 𝐴௬ by 1.41. 
 
When the unit load is situated at any point to the left of C, considering the equilibrium of the right 
segment GF (Fig. 9.13d), it suggests the following:  
 
 
                                 𝐹௬ ൅ 𝐹஼ீ cos45°  ൌ  0        
                                                        𝐹஼ீ  ൌ  െ ಷ೤

ౙ౥౩రఱ°  ൌ  െ1.41𝐹௬ 

 
The obtained expression of 𝐹஼ீ in terms of 𝐹௬ is indicative of the fact that the influence line for 
𝐹஼ீ in the portion AH can be determined by multiplying the corresponding portion of the influence 
line for the reaction 𝐹௬ by െ 1.41. 
 
The influence line of the axial force in member CG constructed from the influence line for the 
reactions 𝐴௬ and 𝐹௬ is shown in Figure 9.13i. 
 
 
 
 
 
  

Example 9.7 

Draw the influence lines for the force in member CH as a unit load moves across the top of the 
truss, as shown in Figure 9.14a. 
 
 
                                                                                                                                                                                                        
 
 
 
 
 

൅↑ ෍ 𝐹௬ ൌ 0 
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Fig.  9.14. Truss. 
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     ሺ𝑔ሻ 

 
Solution 
 
To obtain the expression for the influence line for the axial force in member CH, first pass an 
imaginary section that cuts through this member, as shown in Figure 9.14a.  
 
When the unit load is situated at any point to the right of G, considering the equilibrium of the left 
segment AH (Fig. 9.14 C), it suggests the following:  
 
 
                                      𝐴௬ ൅ 𝐹஼ு ൌ  0         
                                                𝐹஼ு ൌ െ𝐴௬ 

 
The obtained expression of 𝐹஼ு in terms of 𝐴௬ indicates that the influence line for 𝐹஼ு in the 
portion AH can be determined by multiplying the corresponding portion of the influence line for 
the reaction 𝐴௬ by െ 1. 
 
When the unit load is located at any point to the left of H, considering the equilibrium of the right 
segment GF (Fig. 9.14d), it suggests the following:  

൅↑ ෍ 𝐹௬ ൌ 0 



 
 
                                    𝐹௬ െ 𝐹஼ு ൌ  0         
                                                𝐹஼ு ൌ  𝐹௬ 

 
The obtained expression of 𝐹஼ு in terms of 𝐹௬ implies that the influence line for 𝐹஼ு in the portion 
GF is identical to that of 𝐹௬ within the corresponding segment. 
 
The influence line of CG is shown in Figure 9.14g. 
 
 

 
9.4 Uses of Influence Lines 

9.4.1 Uses of Influence Lines to Determine Response Functions of Structures Subjected to 
Concentrated Loads 
 
The magnitude of a response function of a structure due to concentrated loads can be determined 
as the summation of the product of the respective loads and the corresponding ordinates of the 
influence line for that response function. Example 9.5 and example 9.6 illustrate such cases. 
 
 
 
 

Example 9.8 

A simple beam is subjected to three concentrated loads, as shown in Figure 9.15a. Determine the 
magnitudes of the reactions and the shear force and bending moment at the midpoint of the beam 
using influence lines. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

൅↑ ෍ 𝐹௬ ൌ  0 



 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
First, draw the influence line for the support reactions and for the shearing force and the bending 
moment at the midpoint of the beam (see Fig. 9.15b, Fig. 9.15c, Fig. 9.15d, and Fig. 9.15e). Once 
the influence lines for the functions are drawn, compute the magnitude of the response functions, 
as follows: 
 
Magnitude of the support reactions using the influence line diagrams in Figure 9.15b and Figure 
9.15c. 
 
                              𝐴௬ ൌ  ሺ12ሻ൫ఱ

ల
൯ ൅ ሺ14ሻ൫మ

య
൯ ൅ ሺ16ሻ൫భ

య
൯  ൌ  24.67 kN     

 

6 m 

𝐷 
𝐴 

𝐵 

3 m 6 m 

C 

16 kN 14 kN 12 kN 

3 m 

𝐸 

3 m 
𝑛

ሺ𝑎ሻ  

Fig.   9.15. Simple beam. 
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൅
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Solution 



                                𝐸௬  ൌ  ሺ12ሻ൫భ
ల
൯ ൅ ሺ14ሻ൫భ

య
൯ ൅ ሺ16ሻ൫మ

య
൯  ൌ  17.33 kN    

 
Magnitude of the shear force at section n using the influence line diagram in Figure 9.15d. 
 

                               𝑉௡ ൌ  ሺ12ሻ൫െభ
ల
൯ ൅ ሺ14ሻ൫െభ

య
൯ ൅ ሺ16ሻ൫భ

య
൯  ൌ  െ1.33 kN   

 
Magnitude of the bending moment at section n using the influence line diagram of Figure 9.15e.   
 

                             𝑀௡  ൌ  ሺ12ሻ൫య
మ
൯ ൅ ሺ14ሻሺ3ሻ ൅ ሺ16ሻሺ3ሻ  ൌ  108 kN. m    

 
 
 
 
 
 

Example 9.9 

A compound beam is subjected to three concentrated loads, as shown in Figure 9.16a. Using 
influence lines, determine the magnitudes of the shear and the moment at A and the support 
reaction at D. 
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Fig.  9.16. Compound beam. 
ሺ𝑎ሻ  

൅

െ 
3  

6  
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Influence line for moment 𝑀஺ 

ሺ𝑐ሻ  



 
 
 

 
 
 
 
 
 

൅ 
1  1/2  

2  

Influence line for reaction 𝐶 
ሺ𝑑ሻ  

Solution 
 
First, draw the influence line for the shear force 𝑉஺, bending moment 𝑀஺, and reaction 𝐶௬. The 
influence lines for these functions are shown in Figure 9.16b, Figure 9.16c, and Figure 9.16d. 
Then, compute the magnitude of these response functions, as follows: 
 
The magnitude of the shear at section n using the influence line diagram in Figure 9.16b. 
 
                               𝑉஺ ൌ  ሺ8ሻሺ1ሻ ൅ ሺ12ሻ൫భ

మ
൯ ൅ െሺ12ሻሺ1ሻ  ൌ  26 kips    

 
The magnitude of the bending moment at section n using the influence line diagram in Figure 
9.16c. 
 
                             𝑀஺ ൌ  ሺ8ሻሺെ6ሻ ൅ ሺ12ሻሺെ3ሻ ൅ ሺ12ሻሺ6ሻ  ൌ  െ12 kip. ft    
 
Magnitude of the support reaction 𝐶௬ using the influence line diagram in Figure 9.16d. 
 
                                𝐶௬ ൌ  ሺ12ሻ൫భ

మ
൯ ൅ ሺ12ሻሺ2ሻ  ൌ  30 kips 

      
 
 
9.4.2 Uses of Influence Lines to Determine Response Functions of Structures Subjected to 
Distributed Loads 
 
The magnitude of a response function of a structure subjected to distributed loads can be 
determined as the product of the intensity of the distributed load and the area of the influence line. 
Consider a beam subjected to a uniform load 𝜔௫, as shown in Figure 9.17a. First, convert the 
uniform load to an equivalent concentrated load. The equivalent elementary concentrated load for 
a distributed load acting on a differential length 𝑑𝑥 is as follows: 
 
                                                    𝑑𝑃 ൌ 𝜔௫𝑑𝑥                                                                           (9.5) 
 
The magnitude of the response function ሺ𝑟𝑓ሻ due to the elementary concentrated load acting on 
the structure can be expressed as follows: 
 



                                                     𝑟𝑓 ൌ  ሺ𝜔௫𝑑𝑥ሻሺ𝑦ሻ                                                                   (9.6) 
 
where 
 
𝑦 = the ordinate of the influence line at the point of application of the load 𝑑𝑃. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The total response function ሺ𝑅𝐹ሻ due to the distributed load acting at the segment BC of the beam 
is obtained by integration, as follows: 
 

                                                   𝑅𝐹 ൌ ׬  ሺ𝜔௫ሻሺ𝑦ሻ𝑑𝑥 
஼

஻ ൌ 𝜔௫ ׬ ሺ𝑦ሻ𝑑𝑥 
஼

஻                                       (9.7) 
 

The integral ׬ ሺ𝑦ሻ𝑑𝑥 
஼

஻ is the area under the portion of the influence line corresponding to the loaded 
segment of the beam (see the shaded area in Fig. 9.17b). 
 

𝐵 𝐶 

𝑑𝑃 ൌ 𝜔௫𝑑𝑥𝑎 𝜔௫ 

𝑏

𝑥 
𝑑𝑥 

𝑦

න 𝑦𝑑𝑥
௕

௔
 

ሺ𝑏ሻ  

ሺ𝑎ሻ  

Fig.  9.17. Beam subjected to uniform load.  

 
 

Example 9.10 

Using influence lines, determine the shear force and the bending moment at the midpoint of the 
loaded simple beam, as shown in Figure 9.18a. 
 
  
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.5 kips/ft 

𝐴 𝐶 

2 kips/ft 

6 ft 6 ft 

𝐵

Fig.  9.18. Loaded simple beam. ሺ𝑎ሻ  
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Solution 
 
First, draw the influence line for the shear force and bending moment at the midspan of the beam. 
The influence lines for these functions are shown in Figure 9.18b and Figure 9.18c. Then, compute 
the magnitude of these response functions, as follows: 
 
From the influence line diagram, as shown in Figure 9.18b, the magnitude of the shear at B is as 
follows: 
 

                               𝑉஻ ൌ  ሺ2ሻ൫െభ
మ

ൈ 6 ൈ భ
మ
൯ ൅ ሺ1.5ሻ ቀభ

మ
ൈ 6 ൈ ଵ

ଶ
ቁ  ൌ  െ0.75 kip     

 
The magnitude of the bending moment at point B, using influence line diagram in Figure 9.18c, is 
as follows: 
 
                             𝑀஻ ൌ  ሺ2ሻ൫భ

మ
ൈ 6 ൈ 3൯ ൅ ሺ1.5ሻ൫భ

మ
ൈ 6 ൈ 3൯  ൌ  31.5 kip. ft     

 
 
 
 

Example 9.11 
 
A compound beam is subjected to a combined loading, as shown in Figure 9.19a. Using influence 
lines, determine the magnitudes of the reactions at supports A, B, and C. 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

20 kN 
10 kN/m 

A 

2 m 0.5 m

B 
D
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0.5 m

Fig.  9.19. Compound beam subjected to combined loading. 
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Solution 
 
The magnitude of the support reaction 𝐴௬, using the influence line diagram in Figure 9.19b. 
  
                          𝐴௬ ൌ  ሺ10ሻ൫భ

మ
൯ሺ2ሻሺ1ሻ ൅ ሺ10ሻ൫భ

మ
൯ሺ1ሻ൫െభ

మ
൯ ൅ ሺ20ሻ൫െభ

ర
൯  ൌ  2.5 kN      

 
The magnitude of the support reaction 𝐵௬, using the influence line diagram in Figure 9.19c.  
 
                          𝐵௬ ൌ  ሺ10ሻ൫భ

మ
൯ሺ3ሻ൫య

మ
൯ ൅ ሺ20ሻ൫య

ర
൯  ൌ  37.5 kN       

 
The magnitude of the support reaction 𝐷௬, using the influence line diagram of Figure 9.19d.  
 
                            𝐷௬ ൌ  ሺ20ሻ൫భ

మ
൯  ൌ  10 kN       

 



 
9.4.3 Use of Influence Lines to Determine the Maximum Effect at a Point Due to Moving 
Concentrated Loads 
 
In the analysis and design of structures, such as bridges and cranes subjected to moving loads, it 
is often desirable to find the position of the moving load(s) that will produce a maximum influence 
at a point. For some structures, this can be determined by mere inspection, while for most others 
it may require a trial-and-error process using influence lines. Examples 9.12 and 9.13 illustrate the 
trial-and-error process involved when using influence lines to compute the magnitude of certain 
functions of a beam subjected to a series of concentrated moving loads. 
 
 
 
 
 

Example 9.12 

Using influence lines, determine the shear force and bending moment at the midpoint k of a beam 
shown in Figure 9.20a. The beam is subjected to a series of moving concentrated loads, which are 
shown in Figure 9.20b.  
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Fig.  9.20. Beam. 
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Solution 
 
Maximum shear 𝑉௞ from Figure 9.20c.   
 

Case 1:  𝑉௞ ൌ  ሺ6ሻ ቀଵ
ଶ
ቁ ൅ ሺ12ሻ ቀ ଷ

ଵ଴
ቁ ൅ ሺ12ሻ ቀ ଵ

ଶ଴
ቁ  ൌ  7.2 k 

𝑘 

6 k 12 k 12 k

Case 1



 
 

Case 2:  𝑉௞ ൌ  ሺ6ሻ ቀെ ଷ
ଵ଴

ቁ ൅ ሺ12ሻ ቀଵ
ଶ
ቁ ൅ ሺ12ሻ ቀ ଷ

ଵ଴
ቁ  ൌ  7.8 k 

 
 
 

Case 3:  𝑉௞ ൌ  ሺ6ሻ ቀെ ଵ
ଶ଴

ቁ ൅ ሺ12ሻ ቀെଵ
ସ
ቁ ൅ ሺ12ሻ ቀെଵ

ଶ
ቁ  ൌ  െ9.3 k 

 
Maximum positive shear ൌ  7.8 k 
 
Maximum negative shear ൌ  9.3 k 
 
Maximum moment 𝑀௞ from Figure 9.20d. 
 
Case 1:  𝑀௞ ൌ  ሺ6ሻሺ6ሻ ൅ ሺ12ሻሺ10ሻ ൅ ሺ12ሻሺ5ሻ  ൌ  216 k. ft 
 
 
 
 
Case 2:  𝑀௞ ൌ ሺ6ሻሺ1ሻ ൅ ሺ12ሻሺ5ሻ ൅ ሺ12ሻሺ10ሻ ൌ 186 k. ft 
 
Maximum moment 𝑀௞ ൌ 216 k. ft 
 
 

𝑘 

6 k 12 k 12 k 

Case 2

𝑘 

6 k 12 k 12 k 

Case 3 

𝑘

6 k 12 k 12 k 

Case 1 

𝑘

6 k 12 k 12 k 

Case 2 

 
 
 
 
  Example 9.13 
 
A compound beam shown in Figure 9.21a is subjected to a series of moving concentrated loads, 
which are shown in Figure 9.21b. Using influence lines, determine the magnitudes of the reactions 
at supports A, B, and C and the bending moment at section n. 
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Fig.   9.21. Compound beam. ሺ𝑎ሻ  
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Solution 
 
Maximum positive reaction 𝐴௬ from Figure 9.21c. 
 
 
𝐴௬ ൌ  ሺ60ሻሺ1ሻ ൅ ሺ40ሻ൫భ

ర
൯ ൌ 70 kN    Ans    

 
Maximum reaction 𝐵௬ from Figure 9.21d. 
 

Case 1: 𝐵 ൌ  ሺ40ሻ ቀଷ
ସ
ቁ ൅ ሺ60ሻ ቀଷ

ଶ
ቁ ൅ ሺ10ሻሺ0ሻ  ൌ  120 kN 

 

Case 2: 𝐵 ൌ  ሺ10ሻ ቀଵ
ସ
ቁ ൅ ሺ60ሻ ቀଷ

ସ
ቁ ൅ ሺ40ሻ ቀଷ

ଶ
ቁ  ൌ  107.5 kN

60 kN 40 kN 10 kN 

60 kN40 kN 10 kN

Case 1

 

40 kN60 kN 10 kN

Case 2

 
Maximum ൅𝐵௬  ൌ  120 kN 
 
Maximum positive reaction𝐷௬ from Figure 9.21e. 
 
𝐷௬ ൌ  ሺ60ሻሺ1ሻ ൅ ሺ40ሻሺ0ሻ  ൌ  60 kN     
 
Maximum positive moment 𝑀௡ from Figure 9.21f. 
 
𝑀௡ ൌ  ሺ60ሻሺ2ሻ ൅ ሺ10ሻሺ0ሻ  ൌ  120 kN. m    

60 kN 40 kN 10 kN 

60 kN 10 kN 40 kN 



 
 
 
 
9.4.4 Uses of Influence Lines to Determine Absolute Maximum Response Function at Any Point 
Along the Structure 
 
The preceding sections explain the use of influence lines for the determination of the maximum 
response function that may occur at specific points of a structure. This section will explain the 
determination of the absolute maximum value of a response function that may occur at any point 
along the entire structure due to concentrated loads exerted by moving loads.  
 
The absolute maximum shear force for a cantilever beam will occur at a point next to the fixed 
end, while that for a simply supported beam will occur close to one of its reactions. The absolute 
maximum moment for a cantilever beam will also occur close to the fixed end, while that for 
simply supported beam is not readily known and, thus, will require some analysis. To locate the 
position where the absolute maximum moment occurs in a simply supported beam, consider a 
beam subjected to three moving concentrated loads 𝑃ଵ, 𝑃ଶ, and 𝑃ଷ, as shown in Figure 9.22.  
 
Although it is certain from statics that the absolute maximum moment will occur under one of the 
concentrated loads, the specific load under which it will occur must be identified, and its location 
along the beam must be known. The concentrated load under which the absolute maximum 
moment will occur may be determined by inspection or by trial-and-error process, but the location 
of this load should be established analytically. Assume that the concentrated load under which the 
absolute maximum moment will occur is 𝑃ଷ, and the distance of 𝑃ଷ from the centerline of the beam 
is 𝑥. To obtain an expression for 𝑥, first determine the resultant 𝑃ோ of the concentrated loads, acting 
at a distance 𝑥ᇱ from the load 𝑃ଷ.   
 
To determine the right reaction of the beam, take the moment about support A, as follows: 
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𝑥
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𝑥ᇱ െ 𝑥

௅
ଶ
 

A௬  B௬  
Fig.  9.22. Beam subjected to three moving concentrated loads. 



To determine the right reaction of the beam, take the moment about support A, as follows: 
 
                                            ∑ 𝑀஺ ൌ  0          
                                        𝐵௬𝐿 ൌ  𝑃ோൣಽ

మ
െ ሺ𝑥ᇱ െ 𝑥ሻ൧ 

 
                                        𝐵௬ ൌ  ುೃ

ಽ
ൣಽ

మ
െ ሺ𝑥ᇱ െ 𝑥ሻ൧                                                                        (9.8) 

 
Thus, the bending moment under 𝑀ଷ is as follows:  
 
                                         𝑀ଷ ൌ 𝐵௬൫ಽ

మ
െ 𝑥൯  ൌ  ುೃ

ಽ
ൣಽ

మ
െ ሺ𝑥ᇱ െ 𝑥ሻ൧൫ಽ

మ
െ 𝑥൯ 

                                                ൌ  𝑃ோ൫ಽ
ర

െ ൅ ೣᇲ

మ
൅ ೣೣᇲ

ಽ
െ ೣమ

ಽ
൯                                                            (9.9) 

 
The distance 𝑥 for which 𝑀ଷ is maximum can be determined by differentiating equation 9.9 with 
respect to 𝑥 and equating it to zero, as follows: 
 
                                                ೏ಾయ

೏ೣ
ൌ Pோ൫ೣᇲ

ಽ
െ మೣ

ಽ
൯  ൌ  0 

                                                   మೣ
ಽ

 ൌ  ೣᇲ

ಽ
 

Therefore, 
                                                    𝑥 ൌ  ೣᇲ

మ
                                                                                    (9.10) 

 
Equation 9.10 concludes that the absolute maximum moment in a simply supported beam occurs 
under one of the concentrated loads when the load under which the moment occurs and the 
resultant of the system of loads are equidistant from the center of the beam. 
 
 
  Example 9.14 

Determine the absolute maximum bending moment in a 16 m-long simply supported girder bridge 
subjected to a moving truck loading, as shown in Figure 9.23. 
 
 
 
 
 
 
 
 
 

20 kN 50 kN 90 kN 

3 m 5 m 
𝑛 

Fig.  9.23. Simply supported girder beam. 

Solution 
 
Using statics, first determine the value and the position of the resultant of the moving loads. 
 
Resultant load.   
                            



𝑃ோ ൌ  ෍ 𝑃 ൌ  20 ൅ 50 ൅ 90 ൌ  160 

 
Position of the resultant load. To determine the position of the resultant load, take the moment 
about point 𝑛, which is directly below the 20 kN load, as follows:  
 
                     ∑ 𝑀௡: 160𝑥 ൌ  ሺ50ሻሺ3ሻ ൅ ሺ90ሻሺ8ሻ 
                                       𝑥 ൌ  5.44 m 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If the absolute maximum moment is assumed to occur under the 50 kN load, the positioning of the 
resultant and this load equidistant from the centerline of the beam is as shown in Figure  9.24. 
Before computing the absolute maximum moment, first determine the reaction 𝐵௬ using statics. 
 
                                 ∑ 𝑀஺ ൌ  0:  െሺ160ሻሺ9.22ሻ ൅ 𝐵௬ሺ16ሻ ൌ 0 
                                      𝐵௬ ൌ  92.2 kN 
 
The absolute maximum moment under the 50 kN load is as follows: 
 
𝑀ହ଴ ൌ  ሺ92.2ሻሺ9.22ሻ െ ሺ90ሻሺ3.78ሻ  ൌ  509.88 kN. m       
 
 
 
 
 
 

𝐴 

8 m 8 m 

𝐵 

20 kN 50 kN 90 kN 

3 m 

𝑥 ൌ 5.44 m 

1.22 m 

2.56 m

Pୖ ൌ 160 kN 

Centerline 

3.78 m 

Fig.  9.24. Resultant and load equidistant from centerline of the beam.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If the absolute maximum moment is assumed to occur under the 90 kN load, the positioning of the 
resultant and this load equidistant from the centerline of the beam will be as shown in Figure 9.25.  
 
Before computing the absolute maximum moment, first determine the reaction 𝐵௬ using statics. 
 
                                 ∑ 𝑀஺ ൌ  0: െሺ160ሻሺ6.72ሻ ൅ 𝐵௬ሺ16ሻ  ൌ  0 
                                                           𝐵௬ ൌ  67.2 kN 
 
The absolute maximum moment under the 90 kN load is as follows:  
 
                                 𝑀ଽ଴ ൌ  ሺ67.2ሻሺ6.72ሻ  ൌ  451.58 kN. m 
 
From the two possible cases considered in the solution, it is evident that the absolute maximum 
moment occurs under the 50 kN force.    
 
 

𝐴 

8 m 8 m 

𝐵

2.44 

1.28 m 

20 kN 50 kN 90 kN 

𝑥 ൌ 5.44 m 

Pୖ ൌ 160 kN 

Centerline 

3 m 
1.28 m 

Fig.  9.25. Resultant and load equidistant from centerline of the beam.  

 Chapter Summary 
 
Influence lines for statically determinate structures: The effect of a moving load on the 
magnitude of certain functions of a structure, such as support reactions, deflection, and shear force 
and moment, at a section of the structure vary with the position of the moving load. Influence lines 
are used to study the maximum effect of a moving load on these functions for design purposes. 
The influence lines for determinate structures can be obtained by the static equilibrium method or 
by the kinematic or Muller-Breslau method. The influence lines by the former method can be 
determined quantitatively, while those for the latter method can be obtained qualitatively, as have 



been demonstrated in this chapter. Several example problems are solved showing how to construct 
the influence lines for beams and trusses using the afore-stated methods.  

 
 
 
Practice Problems 

9.1 Draw the influence line for the shear force and moment at a section 𝑛 at the midspan of the 
simply supported beam shown in Figure P9.1. 
 
 
 
 
 
 
 
 
 
9.2 Draw the influence lines for the reaction at A and B and the shear and the bending moment at 
point C of the beam with overhanging ends, as shown in Figure P9.2. 
 
 
 
 
 
 
 
 
 
 
9.3 Draw the influence line for the reactions at the support of the cantilever beam shown in           
Figure P9.3. 
 
 
 
 
 
 
 
 
 
9.4 Draw the influence line for the support reactions at B and D and shear and bending moments 
at section 𝑛 of the beam shown in Figure 9.4. 
 
 
 
 

4 m 4 m 

𝐴 𝐷𝑛 

Fig.  P9.1. Simply supported beam.

8 ft 4 ft 

𝐵 𝐶

 8 ft 4 ft 

𝐴 𝐷𝑘

Fig.  P9.2. Beam with overhang.

𝐴 𝐵

3 ft 

Fig.  P9.3. Cantilever beam.



 
 
 
 
 
 
 
 
9.5 Draw the influence lines for support reactions at C and D and at point B of the compound beam 
shown in Figure P9.5. 
 
 
 
 
 
 
 
 
 
 
9.6 Draw the influence lines for the shear force and moment at sections 𝑛s and 𝑘 of the compound 
beam shown in Figure P9.6. 
 
 
 
 
 
 
 
 
 
9.7 Determine the absolute maximum bending moment in a 65 ft-long simply supported girder 
bridge subjected to a moving truck loading, as shown in Figure P9.7. 
 
 
 
 
 
 
 
 
 
 
 
 

 2 m 6 m 

𝐴 𝐵𝑛

Fig.  P9.4. Beam

10 ft 8 ft 4 ft 4 ft 

𝐴 
𝐵 

𝐶

𝐷
𝐸 

Fig.  P9.5. Compound beam. 

A B 

C 

D 

E

F 

2 m 4 m 4 m 

G 

4 m 2 m 2 m 

𝑛 𝑘 

2 m 

Fig.  P9.6. Compound beam. 

5 k 10 k 10 k 

10 ft 20 ft 

Fig.  P9.7. Simply supported girder bridge. 



9.8 Determine the absolute maximum bending moment in a 12 m-long simply supported girder 
bridge subjected to a moving truck loading, as shown in Figure P9.8. 
 
 
 
 
 
 
 
 
 
 
 
9.9 Determine the absolute maximum bending moment in a 40 ft-long simply supported girder 
bridge subjected to a moving truck loading, as shown in Figure P9.9. 
 
 
 
 
 
 
 
 
 
 
 
 
9.10 Determine the absolute maximum bending moment in a 14 m-long simply supported girder 
bridge subjected to a moving truck loading, as shown in Figure P9.10. 
 
 
 
 
 
 
 
 
 
 
 
9.11 Draw the influence lines for the moment at B and the shear force in panel CD of the floor 
girder shown in Figure P9.11. 
 
 
 
 

40 kN 120 kN 15 kN 

2 m 4 m 

Fig.  P9.8. Simply supported girder bridge. 

6 k 14 k 14 k 

12 ft 24 ft 

Fig.  P9.9. Simply supported girder bridge. 

100 kN 150 kN 60 kN 

4 m 8 m 

Fig.  P9.10. Simply supported girder bridge. 



 
 
 
 
 
 
 
 
 
 
9.12 Draw the influence lines for the moment at C and the shear force in panel BC of the floor 
girder shown in Figure P9.12. 
 
 
 
 
 
 
 
 
 
 
9.13 Draw the influence lines for the moment at B and the shear in panel CD of the floor girder 
shown in Figure P9.13. 
 
 
 
 
 
 
 
 
 
9.14 Draw the influence lines for the moment at D and the shear force in panel DE of the floor 
girder shown in Figure P9.14. 
 
 

𝐴 𝐵 𝐶 𝐷
𝐷

12 ft 12 ft 12 ft 12 ft 

Fig. P9.11. Floor girder. 

𝐴 𝐵 𝐶 𝐷
𝐸

3 m 3 m 3 m 3 m

Fig. P9.12. Floor girder. 

𝐴 𝐵 𝐶 
𝐸

𝐷

2 m 2 m 2 m 2 m 

Fig. P9.13. Floor girder. 

 
 
 
 
 
 
 
 
 

𝐴 𝐵 𝐶 𝐷
𝐸

6 ft 6 ft 6 ft 6 ft 

Fig.  P9.14. Floor girder. 



 
9.15 Draw the influence lines for the moment at D and the shear force in panel AB of the floor 
girder shown in Figure P9.15. 
 
 
 
 
 
 
 
 
 
 
 
9.16 Draw the influence lines for the forces in members CD, CF, and GF as a unit load moves 
across the top of the truss, as shown in Figure P9.16. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9.17 Draw the influence lines for the forces in members DE, NE, and NM as a unit live load is 
transmitted to the top chords of the truss, as shown in Figure P9.17. 
 
 
 
 
 
 
 
 
 
 
 
 

𝐴 

𝐵 𝐶 𝐷
𝐸

1.5 m 1.5 m 1.5 m 1.5 m

Fig. P9.15. Floor girder. 
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Fig.  P9.16. Truss. 
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D E F G I
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4 m 

Fig.  P9.17. Truss. 



9.18 Draw the influence lines for the forces in members DE, DH, IH, and HG as a unit live load is 
transmitted to the bottom chords of the truss, as shown in Figure P9.18. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9.19 Draw the influence lines for the forces in members BC, BF, FE, and ED as a unit load moves 
across the bottom chords of the truss, as shown in Figure P9.19. 
 

 3 m  3 m  3 m  3 m 3 m 3 m 

4 m 
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B C D E F 

G HI 

X

X 

X X

Fig.  P9.18. Truss. 
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D EF 

Fig. P9.19. Truss. 
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Chapter 10 

Force Method of Analysis of Indeterminate Structures 
 
10.1 Introduction 
 
The force method of analysis, also known as the method of consistent deformation, uses 
equilibrium equations and compatibility conditions to determine the unknowns in statically 
indeterminate structures. In this method, the unknowns are the redundant forces. A redundant force 
can be an external support reaction force or an internal member force, which if removed from the 
structure, will not cause any instability. This method entails formulating a set of compatibility 
equations, depending on the number of the redundant forces in the structure, and solving these 
equations simultaneously to determine the magnitude of the redundant forces. Once the redundant 
forces are known, the structure becomes determinate and can be analyzed completely using the 
conditions of equilibrium.  
 
For an illustration of the method of consistent deformation, consider the propped cantilever beam 
shown in Figure 10.1a. The beam has four unknown reactions, thus is indeterminate to the first 
degree. This means that there is one reaction force that can be removed without jeopardizing the 
stability of the structure. The structure that remains after the removal of the redundant reaction is 
called the primary structure. A primary structure must always meet the equilibrium requirement. 
A careful observation of the structure being considered will show that there are two possible 
redundant reactions and two possible primary structures (see Fig. 10b and Fig. 10d). Taking the 
vertical reaction at support B and the reactive moments at support A as the redundant reactions, 
the primary structures that remain are in a state of equilibrium. After choosing the redundant forces 
and establishing the primary structures, the next step is to formulate the compatibility equations 
for each case by superposition of some sets of partial solutions that satisfy equilibrium 
requirements. Equations 10.1 and 10.2 satisfy options 1 and 2, respectively. The terms 
∆஻௉, 𝜃஺௉, 𝛿஻஻, and 𝛼஺஺ are referred to as flexibility or compatibility coefficients or constants. The 
first subscript in a coefficient indicates the position of the displacement, and the second indicates 
the cause and the direction of the displacement. For example, ∆஻௉ implies displacement at point B 
caused by the load P in the direction of the load P. The compatibility coefficients can be computed 
using the Maxwell-Betti Law of Reciprocal, which will be discussed in the subsequent section. 
 
 
 
 
 
 
 
 
 
 
 

𝐶 𝐴 
𝐵 

𝑃

Fig.  10.1. Propped cantilever beam.

ሺ𝑎ሻ Actual Structure 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
                                                                                                                                                 ሺ10.1ሻ      
 
                              
                                                                                                                                                 ሺ10.2ሻ                        
     
        where 
 
      𝑀 ൌ moment in the primary structure due to the applied load P. 
      𝑚 ൌ moment in the primary structure due to a unit load applied at B.               

∆஻௉ ൅ 𝑅஻𝛿஻஻ ൌ 0       

𝜃஺௉ ൅ 𝑀஺𝛼஺஺ ൌ 0      

𝐴 𝐶

𝑃

∆𝐵𝑃

𝐵 
𝐴 𝐶

𝛿𝐵𝐵

𝑋஻ ൌ 1

Alternative 𝐴 

ሺ𝑏ሻ Primary Structure 

ሺ𝑐ሻ Redundant 𝑋஻ of unit load applied 

𝑋஺ ൌ 1 

𝑃 

𝐴 𝐵 
𝐶 

𝐵 𝐴 
𝐵 

𝛼𝐴𝐴 

𝜃𝐴𝑃 

Alternative 𝐵 

ሺ𝑑ሻ Primary Structure 

ሺ𝑒ሻ Redundant 𝑋஻ of unit moment applied 



  𝑚ఏ ൌ moment in the primary structure due to a unit moment applied at A.             
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10.2 Maxwell-Betti Law of Reciprocal Deflections 
 
The Maxwell-Betti law of reciprocal deflections establishes the fact that the displacements at two 
points in an elastic structure subjected to a unit load successively at those points are the same in 
magnitude. This law helps reduce the computational efforts required to obtain the flexibility 
coefficients for the compatibility equations when analyzing indeterminate structures with several 
redundant restraints by force method. The Maxwell-Betti law of reciprocal deflection states that 
the linear displacement at point A due to a unit load applied at B is equal in magnitude to the linear 
displacement at point B due to a unit load applied at A for a stable elastic structure. 
 
To prove the Maxwell-Betti law of reciprocal deflections, consider a beam subjected to the loads 
𝑃ଵ and 𝑃ଶ at point 1 and point 2, successively, as shown in Figure 10.2a and Figure 10.2b. 
 
 
 
 
 
 
 
 
 
 

ሺ𝑎ሻ 

2 
𝐴 

1 

𝑃ଵ 

𝐵 

𝛿ଵଵ 𝛿ଶଵ

Fig.  10.2. Beam subjected to loads. 
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𝑃ଶ 

𝐴
1 

𝐵

𝛿ଵଶ 𝛿ଶଶ

ሺ𝑏ሻ 

 

• Determine the degree of indeterminacy of the structure. 
• Choose the redundant reactions from the indeterminate structure. 
• Remove the chosen redundant reactions to obtain the primary structure. 
• Formulate the compatibility equations. The number of the equations 

must match the number of redundant forces. 
• Compute the flexibility coefficients.  
• Substitute the flexibility coefficients into the compatibility equations. 
• In the case of several redundant reactions, solve the compatibility 

equations simultaneously to determine the redundant forces or 
moments. 

• Apply the computed redundant forces or moments to the primary 
structure and evaluate other functions, such as bending moment, 
shearing force, and deflection, if desired, using equilibrium conditions. 

  

Procedure for Analysis of Indeterminate Structures by the Method 
of Consistent Deformation 



Case 1:  
 
Apply 𝑃ଵ, followed by 𝑃ଶ. 
 
Work done at point 1 when 𝑃ଵ is applied: 
              
𝑊ଵ ൌ  భ

మ
𝑃ଵ𝛿ଵଵ                                                                                                   (1)  

 
where  
 
𝛿ଵଵ = the deflection at point 1 due to the gradually applied load 𝑃ଵ.           
 
Work done at points 1 and 2 when 𝑃ଶ is applied and 𝑃ଵ is still in place: 
 
𝑊ଶ ൌ 𝑃ଵ𝛿ଵଶ ൅ భ

మ
𝑃ଶ𝛿ଶଶ                                                                                     (2) 

 
where  
 
𝛿ଵଶ and 𝛿ଶଶ = the deflections at point 1 and point 2, respectively, when the load 𝑃ଶ is gradually at 
point 2. 
 
Total work done 𝑊்: 
 
             𝑊் ൌ  𝑊ଵ ൅ 𝑊ଶ 
       ൌ  భ

మ
𝑃ଵ𝛿ଵଵ ൅ భ

మ
𝑃ଶ𝛿ଶଶ ൅ 𝑃ଵ𝛿ଵଶ                                                                     (3) 

 
Case 2:  
 
Apply 𝑃ଶ, followed by 𝑃ଵ. 
 
Work done at point 1 when 𝑃ଵ is applied: 
 
            𝑊ଶ ൌ  భ

మ
𝑃ଶ𝛿ଶଶ                                                                                       (4)            

 
Work done at points 1 and 2 when 𝑃ଵ is applied and 𝑃ଶ is still in place: 
 
            𝑊ଶ ൌ 𝑃ଶ𝛿ଶଵ ൅ భ

మ
𝑃ଵ𝛿ଵଵ                                                                          (5) 

 
Total work done 𝑊்: 
 
           𝑊் ൌ  𝑊ଵ ൅ 𝑊ଶ 
     ൌ  భ

మ
𝑃ଵ𝛿ଵଵ ൅ భ

మ
𝑃ଶ𝛿ଶଶ ൅ 𝑃ଶ𝛿ଶଵ                                                                      (6) 

 
Equate the total of both cases (from equations 3 and 6).  
 



భ
మ
𝑃ଵ𝛿ଵଵ ൅ భ

మ
𝑃ଶ𝛿ଶଶ ൅ 𝑃ଵ𝛿ଵଶ ൌ  భ

మ
𝑃ଵ𝛿ଵଵ ൅ భ

మ
𝑃ଶ𝛿ଶଶ ൅ 𝑃ଶ𝛿ଶଵ   

                        
                                  𝑃ଵ𝛿ଵଶ ൌ 𝑃ଶ𝛿ଶଵ                                                               (7) 
 
Substituting 𝑃ଵ ൌ 𝑃ଶ ൌ  1 into equation 7 suggests the following:  
                                     
                                                                                                                                                 ሺ10.3ሻ 
 
The Maxwell-Betti law is also applicable for reciprocal rotation. The theorem for reciprocal 
rotation states that the rotation at point B due to a unit couple moment applied at point A is equal 
in magnitude to the rotation at A due to a unit couple moment applied at point B. This is expressed 
as follows: 
 
                                
                                                                                                                                                 ሺ10.4ሻ               
 
 
where 
 
𝛼஺஻ = the rotation at a point A due to a unit couple moment applied at B. 
𝛼஻஺ = the rotation at a point B due to a unit couple moment applied at A.       
 
10.3 Analysis of Indeterminate Beams and Frames  
 
The analyses of indeterminate beams and frames follow the general procedure described 
previously. First, the primary structures and the redundant unknowns are selected, then the 
compatibility equations are formulated, depending on the number of the unknowns, and solved. 
There are several methods of computation of flexibility coefficients when analyzing indeterminate 
beams and frames. These methods include the use of the Mohr integral, deflection tables, and the 
graph multiplication method. These methods are illustrated in the solved example problems in this 
section.  
 
10.3.1 Computation of Flexibility Coefficients Using the Mohr Integral 
 
The Mohr integral for obtaining the flexibility coefficient for beams and frames is expressed as 
follows:  
 
 
 
                                                                                                               
                                                                                                                                                                ሺ10.5ሻ 
                                                                                                    
 
 
      

𝛼஺஻ ൌ 𝛼஻஺
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ಶ಺
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                   𝛿஻஻ ൌ ׬  ೘మ

ಶ಺
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                   𝜃஺௉ ൌ ׬  ಾ೘ഇ
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                   𝛼஺஺ ൌ ׬ ೘ഇ
మ

ಶ಺
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where 
       
𝑀 ൌ moment in the primary structure due to the applied load P. 
𝑚 ൌ moment in the primary structure due to a unit load applied at B.                  
𝑚ఏ ൌ moment in the primary structure due to a unit moment applied at A.             
 
 Example 10.1 
 
Determine the reactions in the beam shown in Figure 10.3a. Use the method of consistent 
deformation to carry out the analysis. All flexibility coefficients are determined by integration. 
EI = constant. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝐴 𝐵

𝐿

q kN/m 

𝑥ଵ 

ሺ𝑏ሻ Primary beam subjected to external load

𝐵

B௬

ሺ𝑐ሻ Redundant B௬ applied on primary beam

𝐴 

𝐿

𝐿

B 

1 N  

𝑥 

ሺdሻ Primary beam subjected to 𝐵௬ ൌ 1 N

𝐴 

𝐴 𝐵 

𝐿

ሺ𝑎ሻ Actual beam

q kN/m 

Fig.  10.3. Beam. 



Solution 
 
Classification of structure. There are four unknown reactions in the beam: three unknown reactions 
at the fixed end A and one unknown reaction at the prop B. Since there are three equations of 
equilibrium on a plane, it implies that the beam has one unknown reaction in excess of the 
equations of equilibrium on a plane, thus it is indeterminate to one degree.  

Choice of primary structure. There may be more than one possible choice of primary structure. For 
the given propped cantilever beam, the prop at B will be selected as the redundant. Thus, the 
primary structure is as shown in Figure 10.3b. 

Compatibility equation. The number of compatibility equations will always match the number of 
the redundant reactions in a given structure. For the given cantilever beam, the number of 
compatibility equations is one and is written as follows: 

                                                      ∆஻௉ ൅ 𝐵௬𝛿஻஻ ൌ  0 

The flexibility or compatibility coefficients ∆஻௉ and 𝛿஻஻ can be computed by several methods, 
including the integration method, the graph multiplication method, and the table methods. For this 
example, the flexibility coefficients are computed using the integration method. 

The bending moment expressions for the primary beam subjected to external loading is written as 
follows: 

0 ൏ 𝑥 ൏ 𝐿 

𝑀 ൌ  െ
𝑞𝑥2

2
 

The bending moment in the primary beam subjected to 𝐵௬ ൌ  1 kN is as follows: 

𝑀 ൌ  𝑥 

∆஻ൌ ∆஻௉ ൅ 𝑅஻𝛿஻஻ ൌ  0 

Using integration to obtain the flexibility coefficients suggests the following:  
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Putting the computed flexibility coefficients into the compatibility equation suggests the 
following:  

𝐵௬ ൌ  െ∆ಳು

ఋಳಳ
 ൌ  െ ቀି௤௅ర

଼ாூ
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௅య ቁ  ൌ  ଷ௤௅
଼

     



 

 

 
 Example 10.2 

Determine the support reactions and draw the bending moment and the shearing force diagrams 
for the indeterminate beam shown in Figure 10.4. Use the method of consistent deformation. EI = 
constant. 
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ሺ𝑏ሻ Primary beam subjected to external load
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ሺ𝑓ሻ Bending moment diagram for primary 
beam due to external loading,  
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ሺ𝑔ሻ Bending moment diagram for primary  
beam due to C௬ ൌ 1,  m 
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ሺ𝑎ሻ Actual beam 

Fig.  10.4. Indeterminate beam. 



Solution 
 
Classification of structure. There are four unknown reactions in the beam: three unknown reactions 
at the fixed end A and one unknown reaction at the prop C. Since there are three equations of 
equilibrium on a plane, it implies that the beam has one unknown reaction in excess of the 
equations of equilibrium on a plane. Thus, it is indeterminate to one degree.  
 
Choice of primary structure. There may be more than one possible choice of primary structure. For 
the given propped cantilever beam, the reaction at C is selected as the redundant reaction. Thus, 
the primary structure is as shown in Figure 10.4b. 

Compatibility equation. The number of compatibility equations will always match the number of 
the redundant reactions in a given structure. For the given cantilever beam, the number of 
compatibility equations is one and is written as follows: 

                                                      ∆஼௉ ൅ 𝐶௬𝛿஼஼ ൌ  0 

The flexibility or compatibility coefficients ∆஼௉ and 𝛿஼஼ are computed using the integration 
method. 

The bending moment expressions for segments AB and BC of the primary beam subjected to an 
external loading is written as follows: 

0 ൏ 𝑥ଵ ൏ 2 

𝑀 ൌ  െସ଴଴௫మ

ଶ
 ൌ  െ200𝑥ଶ 

2 ൏ 𝑥ଶ ൏ 4 

𝑀 ൌ  െସ଴଴௫మ

ଶ
 ି଺଴଴ሺ௫ିଶሻ  ൌ  െ200𝑥ଶ െ 600ሺ𝑥 െ 2ሻ 

The bending moment in the primary beam subjected to 𝐶௬ ൌ  1N is written as follows: 

𝑀 ൌ  𝑥 

∆ଵ௉ൌ න ೘ಾ೛೏ೣ

ಶ಺

ଶ

଴
൅ න ౣಾ೛೏ೣ

ಶ಺

ସ

ଶ
 

∆ଵ௉ൌ  න ሺೣሻ൫షమబబೣమ൯೏ೣ
ಶ಺

ଶ

଴
൅ න ሺೣሻൣషమబబೣమషలబబሺೣషమሻ൧೏ೣ

ಶ಺

ସ

ଶ
 

                             ൌ  െభలఴబబ
ಶ಺

  

                    ∆𝛿௖ଵ  ൌ ׬  ൫ೣమ൯೏ೣ
ಶ಺

ସ
଴  

                             ൌ  మభ.యయ
ಶ಺

 



Putting the computed flexibility coefficients into the compatibility equation suggests the 
following:            

𝐶௬ ൌ  െ∆಴ು

ఋ೎భ
 ൌ  

ଵ଺଼଴଴
ଶଵ.ଷଷ

 ൌ  787.63 N 

Shearing force and bending moment diagram. To determine the magnitudes of the shearing force 
and the bending moment and draw their diagrams, apply the obtained redundant to the primary 
beam, as shown in Figure 10.4e. 

    

 

 

 

 

 

 

 

𝐴 

2 m 

𝐵 

2 m 

400 N/m 

C 

600 N 

𝑥ଵ
𝑥ଶ 

787.63 N ሺ𝑒ሻ 

0 ൏ 𝑥ଵ ൏ 2 

𝑉 ൌ  െ787.63 ൅ 400𝑥 

When 𝑥 ൌ  0, 𝑉 ൌ  െ787.63 N        

When 𝑥 ൌ  2, 𝑉 ൌ  12.37 N 

𝑀 ൌ  787.63𝑥 െ ସ଴଴௫మ

ଶ
 

When 𝑥 ൌ  0, 𝑀 ൌ  0 

When 𝑥 ൌ  2, 𝑀 ൌ  775.26 N. m 

2 ൏ 𝑥ଶ ൏ 4 

𝑉 ൌ  െ787.63 ൅ 400𝑥 ൅ 600 

When 𝑥 ൌ  2 m, 𝑉 ൌ  612.37 N        

When 𝑥 ൌ  4 m, 𝑉 ൌ  1412.37 N 

𝑀 ൌ  787.63𝑥 െ ସ଴଴௫మ

ଶ
 ି଺଴଴ሺ௫ିଶሻ 

When 𝑥 ൌ  2 m, 𝑀 ൌ  775.26 N. m        

When 𝑥 ൌ  4 m, 𝑀 ൌ  െ1249.48 N. m 

1412.37 N

612.37 N 
12.37 N 

787.63 N

െ

൅

ሺℎሻ Shearing force diagram 
for the indeterminate 
beam 

1249.48 N. m
ሺ𝑖ሻ Bending moment diagram for the  
indeterminate beam 



The shearing force and the bending moment diagrams are shown in Figure 10.4h and Figure 
10.4i. 

 
10.3.2 Computation of Flexibility Coefficients by Graph Multiplication Method 
 
The computation of the flexibility coefficients for the compatibility equations by the method of 
integration can be very lengthy and cumbersome, especially for indeterminate structures with 
several unknown redundant forces. In such instances, obtaining the coefficients by the graph 
multiplication method is time-saving. The graph multiplication method is based on the premise 
that the integral ׬ ಾ೘

ಶ಺
𝑑𝑥 contains the product of two moment graphs M and m. To derive the 

formula for the graph multiplication method, consider the two moment diagrams 𝑀ᇱ and  𝑀, as 
shown in Figure 10.5. The graph of 𝑀ᇱ is linear, while that of 𝑀 is of an arbitrary function.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Assuming the flexural rigidity EI is constant, the integral of the product of these two moment 
diagrams can be expressed as follows: 
 
׬                        ಾಾᇲ

ಶ಺
𝑑𝑥                                                                                   (1) 

 
The elementary area of the bending moment diagram at a distance x from the left end, as shown in 
Figure 10.5a, is written as follows:  
 
                       𝑑𝐴 ൌ  𝑀𝑑𝑥                                                                              (2)                                                       

𝛽 

𝑥

X஼

0 

0ᇱ 

𝑑𝑥 
𝑑𝐴 

𝑀 

M 

𝑀ᇱ

𝑀ᇱ

𝐸𝐼 ൌ constant 

Y஼

𝐶 𝐴 

Fig.  10.5. Moment diagrams.

ሺ𝑏ሻ

ሺ𝑎ሻ 



 
Using trigonometry, the ordinate 𝑀ᇱ of the linear graph 𝑀ᇱ at a distance x from the origin, as shown 
in Figure 10.5b, can be expressed as follows: 
 
                        𝑌௖ ൌ  𝑥. 𝑡𝑎𝑛𝛽                                                                          (3)                                                       
  
Substituting equation 2 and 3 into equation 1 suggests the following:  
        
׬                    ಾ೘

ಶ಺
𝑑𝑥 ൌ ׬  𝑑𝐴. 𝑥. 𝑡𝑎𝑛𝜑                      

                                  ൌ  𝑡𝑎𝑛𝛽 ׬ 𝑑𝐴. 𝑥 
                                  ൌ  𝑥𝑡𝑎𝑛𝛽. 𝐴 
                                  ൌ  𝐴𝑌௖ 
 
                                                                                                                                                ሺ10.6ሻ                          
 
 
As suggested by equation 10.6, the integral of the product of two moment diagrams is equal to the 
product of the area of one of the moment diagrams (preferably the diagram with the arbitrary 
outline) and the ordinate in the second moment diagram with a straight outline, lying on a vertical 
line passing through the centroid of the first moment diagram.  

 
 Example 10.3 
 
Determine the reactions at supports A, C, and D of the beam shown in Figure 10.6a. A is a fixed 
support, while C and D are roller supports. EI = constant. 
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8ft 

ሺ𝑏ሻ Primary beam subjected to external load 

30 k 

4 ft 

𝐷 
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4 ft 

𝐴 
𝐶 

8ft 

ሺ𝑎ሻ Actual beam 

4 ft 

30 k 

𝐵 
𝐷

Fig.  10.6. Beam. 
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Classification of structure. There are five unknown reactions in the beam. Thus, the degree of 
indeterminacy of the structure is two.  
 
Choice of primary structure. The supports at C and D are chosen as the redundant reactions. 
Therefore, the primary structure is a cantilever beam subjected to the given concentrated load 
shown in Figure 10.6b. The primary structure subjected to the redundant unknowns are shown in 
Figure 10.6c, Figure 10.6d, Figure 10.6e, and Figure 10.6f.   
 

𝐴 
𝐶 

8ft 8ft 

𝐷 

ሺ𝑑ሻ Primary beam subjected to 𝐶௬ ൌ 1 
1 k 

𝐴 

16 ft 

𝐷 

1 k 
ሺ𝑓ሻ Primary beam subjected to 𝐷௬ ൌ 1 

120 

ሺgሻ Bending moment diagram for 
primary beam due to external 

M୮ 

8 

ሺhሻ Bending moment diagram for 
primary beam due to C௬ ൌ 1 k

m஼

16 

ሺiሻ Bending moment diagram for 
primary beam due to D௬ ൌ 1 k

mୈ

𝐴 
𝐶 

8ft 8ft 

𝐷 

ሺcሻ Redundant 𝐶௬ applied on primary beam
𝐶௬ 

ሺeሻ Redundant 𝐷௬ applied on primary beam

𝐴 

16 ft 

𝐷

𝐷௬ 

 
Solution 



Compatibility equation. There are two compatibility equations, as there are two redundant 
unknown reactions. The equations are as follows: 
 
                                    ∆஼௉ ൅ 𝐶௬𝛿஼஼ ൅ 𝐷௬𝛿஼஽ ൌ  0 

                                    ∆஽௉ ൅ 𝐶௬𝛿஽஼ ൅ 𝐷௬𝛿஽஽ ൌ  0 

The first alphabets of the subscript of the flexibility coefficients indicate the location of the 
deflection, while the second alphabets indicate the force causing the deflection. Using the graph 
multiplication method, the coefficients are computed as follows:  

Using the graph multiplication method, the flexibility coefficients are computed as follows:  

∆஼௉ൌ  ቀെଵ
ଶ

ൈ 4 ൈ 120ቁ ሺ6.67ሻ  ൌ  െ1600.8 

∆஽௉ൌ  ቀെଵ
ଶ

ൈ 4 ൈ 120ቁ ሺ10.67ሻ  ൌ  െ2560 

𝛿஼஼ ൌ  ቀଵ
ଶ

ൈ 8 ൈ 8ቁ ሺ5.33ሻ  ൌ  170.56 

𝛿஼஽ ൌ  𝛿஽஼ ൌ  ቀଵ
ଶ

ൈ 8 ൈ 8ቁ ሺ13.33ሻ  ൌ  426.56 

𝛿஽஽ ൌ  ቀଵ
ଶ

ൈ 16 ൈ 16ቁ ሺ10.67ሻ  ൌ  1365.76 

Substituting the flexibility coefficients into the compatibility equation suggests the following two 
equations, with two unknowns: 

െ1600.8 ൅ 170.56𝐶௬ ൅ 426.56𝐷௬ ൌ  0  
െ2560 ൅ 426.56𝐶௬ ൅ 1365.76𝐷௬ ൌ  0 

Solving both equations simultaneously suggests the following: 

𝐶௬ ൌ  21.46 k     

𝐷௬ ൌ  െ4.83 k    

The determination of the reactions at support A is as follows:  

൅↶ ∑ 𝑀஺ ൌ  0: െሺ30ሻሺ4ሻ െ ሺ4.83ሻሺ16ሻ ൅ ሺ21.46ሻሺ8ሻ ൅ 𝑀஺ ൌ  0 

                        𝑀஺ ൌ  25.6 k. ft    

൅↑ ෍ 𝐹௬ ൌ  0: 𝐴௬ െ 30 ൅ 21.46 െ 4.83 ൌ  0 

 𝐴௬ ൌ  13.37 k     

൅→ ෍ 𝐹௫ ൌ  0: 𝐴௫ ൌ  0     

 



10.3.3 Use of Beam-Deflection Tables for Computation of Flexibility Coefficients 
 
This is the easiest method of computation of flexibility coefficients. It involves obtaining the 
constants from tabulated deflections based on the types of supports and loading configurations, as 
shown in Table 10.1 and Table 10.2.  
 
 
Table 10.1. Simply supported beam slopes and deflections. 
 Beam Slope Deflection Elastic curve 
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Table 10.2. Cantilevered beam slopes and deflections. 
Beam Slope Deflection Elastic curve 
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 Example 10.4 
 
Draw the bending moment and the shearing force for the indeterminate beam shown in Figure 
10.7a. EI = constant. 
 
 
 
 

 

 

 

 

 

 

 

 

 

250 kN/m 

ሺ𝑒ሻ Bending moment diagram for primary beam
due to external loading  
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ሺ𝑏ሻ Primary beam subjected to external 
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𝐴
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ሺ𝑎ሻ Actual beam 

Fig.  10.7. Indeterminate beam. 
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ሺ𝑓ሻ Bending moment diagram  for primary
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𝐶
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ሺ𝑐ሻRedundant 𝐶௬ applied on primary
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Solution 
 
Classification of structure. There are four unknown reactions in the beam. Thus, the beam is 
indeterminate to one degree.  
 
Choice of primary structure.  The reaction at B is chosen as the redundant reaction. Thus, the 
primary structure is a simply supported beam, as shown in Figure 10.7b. Shown in Figure 10.7c 
and Figure 10.7d are the primary structures loaded with the redundant reactions. 
 
Compatibility equation. The compatibility equation for the beam is written as follows: 
 
                                        ∆஻௉ ൅ 𝐵௬𝛿𝑩𝑩 ൌ 0 
 
To compute the flexibility coefficients ∆஻௉ and 𝛿஻஻, use the beam-deflection formulas in Table 
10.1.   

                                    ∆஻௉ൌ  െ ఱഘಽర

యఴరಶ಺
ൌ ି ఱ

ሺమబሻሺభబሻర

యఴరಶ಺
ൌ  െ ଶ଺଴ସ.ଵ଻

ாூ
  

                                   𝛿𝑩𝑩 ൌ ುಽయ

రఴಶ಺
ൌ ሺభబሻయ

రఴಶ಺
ൌ మబ.ఴయ

ಶ಺
 

Putting the computed flexibility coefficients into the compatibility equation suggests the 
following:   

                                     𝐵௬ ൌ  ∆ಳು

ఋ𝑩𝑩
 ൌ  ଶ଺଴ସ.ଵ଻

ଶ଴.଼ଷ
 ൌ  125 kN 

Shearing force and bending moment diagrams. Once the magnitudes of the redundant reactions 
are known, the beam becomes determinate and the bending moment and shearing force diagrams 
are drawn, as shown in Figure 10.7g and Figure 10.7h.  
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ሺ𝑔ሻ Shearing force diagram for the 
indeterminate beam 

െ െ 

൅ ൅ 

62.5 kN. m 

ሺℎሻ Bending moment diagram for the 
indeterminate beam. 

 
 
 
 
 
 Example 10.5 
 
To obtain the flexibility coefficients, use the beam-deflection tables to determine the support 
reactions of the beams in examples 10.1 and 10.2.  
 
Solution 
 
Classification of structure. The degree of indeterminacy of the beam in examples 10.1 and 10.2 is 
2.  
 
Flexibility coefficients. Using the information in Table 10.2, determine the flexibility coefficients 
for example 10.1, as follows: 
  

∆஻௉ൌ  െ௉௅ర

଼ாூ
 ൌ  െ௤௅ర

଼ாூ
 

 

𝛿஻஻ ൌ  ௉௅య

ଷாூ
 ൌ  ௤௅య

ଷாூ
 

 

𝐵௬ ൌ  െ∆ಳು

ఋಳಳ
 ൌ  െ ቀെ௤௅ర

଼ாூ
ቁ ቀଷாூ

௅య ቁ  ൌ  ଷ௤௅
଼

     

 
Using the beam-deflection formulas, obtain the following flexibility coefficients for the beam in 
example 10.2, as follows:  

∆஼௉ൌ ି௪௅ర

଼ாூ
൅

െ5𝑃𝐿ଷ

48𝐸𝐼
 ൌ  

െ400ሺ4ሻସ

8𝐸𝐼
൅

െ5ሺ600ሻሺ4ሻଷ

48𝐸𝐼
 ൌ  െଵ଺଼଴଴

ாூ
 

𝛿஼஼ ൌ ௉௅య

ଷாூ
ൌ ሺଵሻሺସሻయ

ଷாூ
ൌ ଶଵ.ଷଷ

ாூ
 

Putting the computed flexibility coefficients into the compatibility equation suggests the 
following answer:  



𝐶௬ ൌ  െ∆಴ು

ఋ಴಴
 ൌ  ଵ଺଼଴଴

ଶଵ.ଷଷ
 ൌ  787.63 N      

 

 
 
 Example 10.6 

 
Using the method of consistent deformation, draw the shearing force and the bending moment 
diagrams of the frame shown in Figure 10.8a. EI = constant.  
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝐶 𝐵 

𝐴 

10 kN/m 

ሺ𝑏ሻ Primary frame subjected  
to external load 

𝐶 𝐵 

𝐴 

𝐴௬ 

ሺ𝑐ሻ Redundant 𝐴௬ applied on  

Primary frame  

45 kN.m 

45 kN.m 

ሺ𝑒ሻ Bending moment for primary
beam due to external loading 

3 m 
5 m 

𝐶 𝐵 

𝐴 

10 kN/m 

ሺ𝑎ሻ Actual frame 

Fig.  10.8. Frame. 



 

 

 

 

 

 

 

𝐶 𝐵 

𝐴 

𝐴௬ ൌ 1kN 

ሺ𝑑ሻ Primary frame subjected 
to 𝐴௬ ൌ 1kN  

5 kN.m 

ሺ𝑓ሻ Bending moment for primary
beam due to 𝐴௬ ൌ 1 kN 

 
Solution 
 
Classification of structure. There are four unknown reactions in the frame: one unknown reaction 
at the free end A and three unknown reactions at the fixed end C. Thus, the degree of indeterminacy 
of the structure is one.  
 
Choice of primary structure. Selecting the reaction at support A as the redundant unknown force 
suggests that the primary structure is as shown in Figure 10.8b. The primary structure loaded with 
the redundant force is shown Figure 10.8c and Figure 10.8d. 
 
Compatibility equation. The compatibility equation for the indeterminate frame is as follows:  
 

∆஺௉ ൅ 𝐴௬𝛿஺஺ ൌ  0 
 
The flexibility or compatibility coefficients ∆஺௉ and 𝛿஺஺ are computed by graph multiplication 
method, as follows:  
 

∆஻௉ ൌ  െଵ
ଶ
ሺ5 ൈ 5ሻሺ45ሻ  ൌ  െ562.5 

    

𝛿஺஺ ൌ  ଵ
ଶ
ሺ5 ൈ 5ሻ ቀଵ଴

ଷ
ቁ  ൌ  41.67 

 
Substituting the flexibility coefficients into the compatibility equation and solving it to obtain the 
redundant reaction suggests the following:  
 
              െ562.5 ൅ 41.67𝐴௬ ൌ  0 
              𝐴௬ ൌ  13.5 kN 
 
Determining the reactions at C. 
 
∑ 𝑀஼ ൌ  0: െሺ13.5ሻሺ5ሻ ൅ ሺ10 ൈ 3ሻሺ1.5ሻ ൅ 𝑀஼ ൌ  0 
 

𝑀஼ ൌ  22.5.6 kN. m 



 

෍ 𝐹௬ ൌ  0: െ 𝐶௬ ൅ 13.5 ൌ  0 

 
𝐶௬ ൌ  13.5 kN 

 

෍ 𝐹௫ ൌ  0: െ𝐶௫ ൅ ሺ10 ൈ 3ሻ  ൌ  0 

 
C௫ ൌ  30 kN 

 

 

 

 Example 10.7 

Using the method of consistent deformation, determine the support reactions of the truss shown in 
Figure 10.9a. EI = constant.   
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝐷 

𝐶 𝐵 
40 k 

𝐴 

ሺ𝑏ሻ Primary frame subjected 
 to external load 

𝐷 

𝐶 𝐵 

𝐴
Xଵ ൌ 1k 

ሺ𝑑ሻ Primary frame subjected 
to 𝐷௬ ൌ 1.  

𝐷 

𝐶 𝐵 

𝐴

Xଶ ൌ 1k 

ሺ𝑒ሻ Primary frame subjected 
to 𝐷௫ ൌ 1.  

6 ft 

8 ft 𝐷 

𝐶 𝐵 
40 k 

𝐴 

4 ft 

ሺ𝑎ሻ Actual frame 

Fig.  10.9. Truss. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝐷 

𝐶 𝐵 

𝐴 

𝐷௫ ൌ Xଶ

𝐷௬ ൌ Xଵ 

ሺ𝑐ሻ Redundants 𝐷௬ and 𝐷௫ 
Applied on primary frame.  

320 k. ft 
ሺ𝑓ሻ Bending moment for primary 
frame sujected to external loading 

6 k. ft 

6 k. ft 

ሺ𝑔ሻ Bending moment for primary 
 frame due to 𝐷௬ ൌ 1 k 

4 k. ft 4 k. ft 

4 k. ft 

4 k. ft 
ሺℎሻ Bending moment for primary 

frame due to 𝐷௫ ൌ 1 k 
 

Solution 
 
Classification of structure. There are five unknown reactions in the beam. Thus, the degree of 
indeterminacy of the structure is two.  
 
Choice of primary structure. The two reactions of the pin support at D are chosen as the redundant 
reactions, therefore the primary structure is a cantilever beam subjected to a horizontal load at C, 
as shown in Figure 10.9b. The primary structure loaded with the redundant unknowns is shown in 
Figure 10.9d and Figure 10.9e. 
 
Compatibility equation. The number of compatibility equations is two, since there are two 
redundant unknowns. The equations are written as follows: 
 

∆ଵ௉ ൅ 𝑋ଵ𝛿ଵଵ ൅ 𝑋ଶ𝛿ଵଶ ൌ  0 



∆ଶ௉ ൅ 𝑋ଵ𝛿ଶଵ ൅ 𝑋ଶ𝛿ଶଶ ൌ  0 

The first number of the subscript in the flexibility coefficients indicates the direction of the 
deflection, while the second number or letter indicates the force causing the deflection. The 
coefficients are computed using the graph multiplication method, as follows: 

 

∆ଵ௉ ൌ  
1

𝐸𝐼
ቀଵ

ଶ
ൈ 8 ൈ 320ቁ ሺ6ሻ  ൌ  ଻଺଼଴

ாூ
 

∆ଶ௉ ൌ  
1

𝐸𝐼
ቀെଵ

ଶ
ൈ 4 ൈ 4ቁ ሺ53.33ሻ ൅ ቀଵ

ଶ
ൈ 4 ൈ 4ቁ ሺ266.8ሻ  ൌ  

1707.76
𝐸𝐼

 

𝛿ଵଵ ൌ  
1

𝐸𝐼
ቀଵ

ଶ
ൈ 6 ൈ 6ቁ ሺ4ሻ ൅ ሺ6 ൈ 8ሻሺ6ሻ  ൌ  ଷ଺଴

ாூ
 

𝛿ଵଶ ൌ  𝛿ଶଵ  ൌ  
1

𝐸𝐼
ቀെ ଵ

ଶ
ൈ 4 ൈ 4ቁ ሺ6ሻ ൅ ቀଵ

ଶ
ൈ 4 ൈ 4ቁ ሺ6ሻ െ ቀଵ

ଶ
ൈ 6 ൈ 6ቁ ሺ4ሻ  ൌ  െ ଻ଶ

ாூ
 

𝛿ଶଶ  ൌ  
1

𝐸𝐼
ሺ3ሻ ቀଵ

ଶ
ൈ 4 ൈ 4ቁ ሺ2.67ሻ ൅ ሺ4 ൈ 6ሻሺ4ሻ  ൌ  ଵ଺଴.଴଼

ாூ
 

Substituting the flexibility coefficients into the compatibility equation suggests the following two 
equations with two unknowns: 
 
 7680 ൅ 360𝑋ଵ െ 72𝑋ଶ ൌ  0  
 
1707.76 െ 72𝑋ଵ ൅ 160.08𝑋ଶ ൌ  0 
 

Solving both equations simultaneously suggests the following: 

𝑋ଵ ൌ 𝐷௬ ൌ 25.79k    

𝑋ଶ ൌ 𝐷௫ ൌ 22.27k    

Determination of the reactions at support A. 

∑ 𝑀஺ ൌ  0: ሺ25.79ሻሺ6ሻ ൅ ሺ22.27ሻሺ16ሻ ൅ ሺ21.46ሻሺ4ሻ ൅ 𝑀஺ ൌ  0 

𝑀஺ ൌ  25.6 k. ft      

෍ 𝐹௬ ൌ  0: 𝐴௬ െ 30 ൅ 21.46 െ 4.83 ൌ  0 

 𝐴௬ ൌ  13.37 k       

 

10.4 Analysis of Indeterminate Trusses 
 



The procedure for the analysis of indeterminate trusses is similar to that followed in the analysis 
of beams. For trusses with external redundant restraints, the procedure entails determining the 
degree of indeterminacy of the structure, selecting the redundant reactions, writing the 
compatibility equations, determining the deflection due to the applied load and the one due to a 
unit redundant reaction force applied to the primary structure, and solving the compatibility 
equation(s) to determine the redundant reactions. For trusses with internal redundant members, the 
procedure involves selecting the redundant members, cutting the redundant members and depicting 
each of them as a pair of forces in the primary structure, and then applying the condition of 
compatibility to determine the axial forces in the redundant members. Consider the truss below for 
an example. This truss is indeterminate to the first degree. Members AC and BD of the truss are 
two separate overlapping members. Either of these members can be considered redundant, since 
the primary structure obtained after the removal of either of them will remain stable. Selecting BD 
as the redundant member, cutting through it and applying a pair of forces on the cut surface, and 
then indicating that the displacement of the truss at the cut surface is zero suggests the following 
compatibility expression: 
  
                                                                                                                                               ሺ10.7ሻ 
                           
where 
 
∆஻஽ൌ the relative displacement of the cut surface due to the applied load.   
𝛿஻஽ ൌ the relative displacement of the cut surface due to an applied unit redundant load on the cut  
           surface.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑃

ሺ𝑏ሻ Primary Structure 

𝐴 

𝐵 

𝐷

𝐶 

𝑋 ൌ 1 

𝑋 ൌ 1 

ሺ𝑐ሻ Redundant 𝑋 ൌ 1 applied

𝐴

𝐵

𝐷

𝐶 

𝐵 𝐶
𝑃

ሺ𝑎ሻ Actual Structure 

𝐴 𝐷 

Fig.  10.10 

∆஻஽ ൅ 𝐹஻஽𝛿஻஽ ൌ 0



The flexibility coefficients for the compatibility equation for the indeterminate truss analysis is 
computed as follows: 
 
    
                                                          
                                                                                                                                               ሺ10.8ሻ 
 
 
 
 
where 
  
∆௑௉ൌ the displacement at a joint 𝑋 or member of the primary truss due to applied external 
           load. 
𝛿௑ଵ ൌ the displacement at joint 𝑋 or member of the primary truss due to the unit redundant 
           force. 
𝐹 ൌ axial force in the truss members due to the applied external load that causes the 
         displacement ∆.  
𝑓 ൌ axial forces in truss members due to the applied unit redundant load that causes the  
        displacement 𝛿.  
𝐿 ൌ length of member. 
𝐴 ൌ cross sectional area of a member. 
 
 
 Example 10.8 

 
Using the method of consistent deformation, determine the axial force in all the members of the 
truss shown in Figure 10.11a. EA = constant. .  
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L

P 
ሺ𝑏ሻ Primary truss subjected 

to external load  

B C

D A
L 

L 

P ሺ𝑎ሻ Actual truss 

A 

B C 

D 

Fig.  10.11. Truss. 

 

 

 

 

∆௑௉ ൌ ∑ ಷ೑ಽ
ಲಶ

  

𝛿௑௑ ൌ ෍ ௙మ௅
஺ா

 



 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

L 

L 

ሺ𝑐ሻRedundant Xଵ applied  
on primary truss 

A 

B C 

D 

Xଵ 

B C

ሺ𝑑ሻ Primary truss subjected 
to redundant Xଵ ൌ 1  

L

L

A D

1

1

ሺeሻ Primary truss subjected 
redundant Xଶ ൌ 1  

L 

L 

B C 

D 
A 

Xଶ ൌ 1 

 
Solution 
 
Determining support reactions in the primary structure. 
 

൅↶ ෍ 𝑀஻ ൌ  0 

െ𝑃𝐿 ൅ 𝐴௫𝐿 ൌ  0 
𝐴௫ ൌ  𝑃 
 

൅→ ෍ 𝐹௫ ൌ  0 

െ𝑃 ൅ 𝐵௫ ൌ  0 
𝐵௫ ൌ  𝑃 
 

൅↑ ෍ 𝐹௬ ൌ  0 

െ𝑃 െ 𝐵௬ ൌ  0 
𝐵௬ ൌ  𝑃 



 
Compatibility Equation. 

       ∆ଵ௉ ൅ Xଵ𝛿ଵଵ ൅ Xଶ𝛿ଵଶ ൌ  0 

       ∆ଶ௉ ൅ Xଵ𝛿ଶଵ ൅ Xଶ𝛿ଶଶ ൌ  0 

 
Determining forces in members due to applied external load. 
 
Joint D. 
 
൅↑ ∑ 𝐹௬ ൌ  0: 𝐹஽஼ െ 𝑃 ൌ  0 

𝐹஽஼ ൌ  𝑃 

൅→ ෍ 𝐹௫ ൌ  0: 𝐹஽஺ ൌ  0 

 
Joint A. 
 
→ ∑ 𝐹௫ ൌ  0: 𝐹஺஼cos45° ൅ 𝐹஺஽ ൅ 𝑃 ൌ  0 

𝐹஺஼ ൌ  െ ௉
ୡ୭ୱ ସହ°

 ൌ  െ1.414𝑃 

൅↑ ෍ 𝐹௬ ൌ  0: 𝐹஺஻ ൅ 𝐹஺஼cos45° ൌ  0 

𝐹஺஻ ൌ  െሺെ1.414𝑃ሻcos 45° ൌ  𝑃 

Joint B. 
൅→ ∑ 𝐹௫ ൌ  0: െ 𝑃 ൅ 𝐹஻஼ ൌ  0; 𝐹஻஼ ൌ  𝑃 
 
Determining forces in members due to redundant 𝐹஻஽ ൌ  1. 
 
Joint B. 
 

൅→ ෍ 𝐹௫ ൌ  0: 1 cos 45° ൅ 𝐹஻஼ ൌ  0; 𝐹஻஼ ൌ  െ cos 45° ൌ  െ0.7071 

൅↑ ෍ 𝐹௬ ൌ  0: െ 1 cos 45° െ 𝐹஻஺ ൌ  0; 𝐹஻஺ ൌ  െ0.7071  

 
Joint D. 
 

൅→ ෍ 𝐹௫ ൌ  0: െ 1 cos 45° െ 𝐹஽஺ ൌ  0; 𝐹஽஺ ൌ  െ cos 45° ൌ  െ0.7071 

Fୈେ 

Fୈ୅

Joint D 

P 

P

F୅୆ 
F୅େ

F୅ୈ

45° 

Joint A 

P F୆େ

Joint B 

F୆୅ 

F୆୅ 

1 

F୆େ
45°

Joint B 

Fୈେ

Fୈ୅ 

Joint D 

1 

45° 



൅↑ ෍ 𝐹௬ ൌ  0: 1 cos 45° ൅ 𝐹஽஼ ൌ  0; 𝐹஽஼ ൌ  െ0.7071  

 
Joint C. 
 

൅↑ ෍ 𝐹௬ ൌ  0: െ 𝐹஼஺ cos 45° െ 𝐹஼஽ ൌ  0; 𝐹஼஺ ൌ  1  

 
Determining forces in members due to redundant 𝐴௬ ൌ  1. 
 
 
 
 
 
 
 
 
 
 
 
 
Joint A. 
 

൅↑ ෍ 𝐹௬ ൌ  0: 1 ൅ 𝐹஺஻ ൌ  0 

Fେ୅ 

Fେ୆ 
Joint C 

Fେୈ 

C 

 
 
 
 
The determination of the member-axial forces can be conveniently performed in a tabular form, 
as shown in Table 10.3. 
 
Table 10.3.  
Member Length N n஻஽ n஺ n஻஽

ଶ 𝐿 n஺
ଶ𝐿 n஻஽n஺𝐿 Nn஻஽𝐿 Nn஺𝐿

AB L P െ0.7071 െ1 0.5L L 0.7071L െ0.7071PL െPL 
AC 1.414L െ1.414P 1 0 1.414L 0 0 െ2PL 0 
AD L 0 െ0.7071 0 0.5L 0 0 0 0 
BC L P െ0.7071 0 0.5L 0 0 െ0.7071PL 0 
BD 1.414L 0 1 0 1.414L 0 0 0 0 
CD L P െ0.7071 0 0.5L 0 0 െ0.7071PL 0 

Total 4.828𝐿 𝐿 0.7071L 

 
െ4.12PL െPL

 
 

0 

0 0 

0 

1 

1 

A 

B C

D 

𝐹஺஻ ൌ  െ1 

0 
0 

F஺஻ 

1

Joint A 

A 



∆ଵ௉ൌ  െସ.ଵଶ௉௅
ா஺

 

∆ଶ௉ൌ  െ௉௅
ா஺

 

 
𝛿ଵଵ ൌ  ସ.଼ଶ଼௅

ா஺
 

𝛿ଵଶ ൌ 𝛿ଵଶ ൌ  ଴.଻଴଻ଵ௅
ா஺

 

𝛿ଶଶ ൌ ௅
ா஺

 

 
Substituting the flexibility coefficient into the compatibility equations and solving the 
simultaneous equations suggests the following:  
 

െ4.12𝑃 ൅ 4.828𝑋ଵ ൅ 0.7071𝑋ଶ ൌ  0 

െ𝑃 ൅ 0.7071𝑋ଵ ൅ 𝑋ଶ ൌ  0 

𝑋ଵ ൌ 𝐹஻஽ ൌ  0.79P 
𝑋ଶ ൌ 𝐴௬ ൌ  0.44P 
 
The axial forces in members are as follows:  
 
𝐹஺஻ ൌ  𝑃 ൅ ሺ0.79𝑃ሻሺെ0.7071ሻ ൅ ሺ0.44𝑃ሻሺെ1ሻ ൌ 0.0014𝑃       
𝐹஺஼ ൌ  െ1.414𝑃 ൅ ሺ1ሻሺ0.79𝑃ሻ ൌ െ0.624𝑃        
𝐹஺஽ ൌ  ሺെ0.7071ሻሺ0.79𝑃ሻ ൌ െ0.559𝑃     
𝐹஻஼ ൌ  𝑃 ൅ ሺെ0.7071ሻሺ0.79𝑃ሻ ൌ 0.441𝑃       
𝐹஻஽ ൌ  0.79𝑃    
𝐹஼஽ ൌ  𝑃 ൅ ሺെ0.7071ሻሺ0.79𝑃ሻ ൌ 0.441𝑃      
 
 
 
 
 Example 10.9 
 
Using the method of consistent deformation, determine the axial force in member AD of the truss 
shown in Figure 10.12a. EA = constant. 
 
 
 
 
 
 
 
 
 
 
 
 

B

C D 

A

E 

F஺஽ 

4 m 4 m 

4 m 

Redundant 𝐹஺஽ ൌ 𝑋ଵ applied  
on primary truss 

B 

CD 

A 

E 
4 m 

4 m 

4 m 

60 kN Actual truss 

Fig.  10.12. Truss. 



 
 
 
 
 
 
 
 
 
 
 
 

B

C D 

A 

E 
4 m 

4 m 

4 m 

60 kN 
Primary truss subjected 
 to external load  

B

C D 

A 

E
4 m 4 m 

4 m 1kN 

Primary truss subjected 
to F஺஽ ൌ Xଵ ൌ 1  

 
Solution 
 
Determination of axial forces in members due to applied external loads. 
 

൅↑ ෍ 𝐹௬ ൌ  0: 𝐹஻஼ sin45° െ 60 ൌ  0 

𝐹஻஼ ൌ  84.85 kN 
 

൅→ ෍ 𝐹௫ ൌ  0: െ 𝐹஼஽ െ 𝐹஻஼ cos45° ൌ  0 

𝐹𝐶𝐷 ൌ  െ84.85 cos45° ൌ  െ60kN 

 
 
 

൅↑ ෍ 𝐹௬ ൌ  0: 𝐹஽஻ ൌ  0 

→ ෍ 𝐹௫ ൌ  0: 𝐹஽ா ൌ  𝐹஽஼ ൌ  െ60 kN 

 
 

൅↑ ෍ 𝐹௬ ൌ  0: െ𝐹஻ா cos 45° െ 𝐹஻஼ cos 45° ൌ  0 

𝐹஻ா ൌ  െ𝐹஻஼ ൌ  െ84.85 kN 

൅→ ෍ 𝐹௫ ൌ  0: െ 𝐹஻஺ െ 𝐹஻ா 𝑐𝑜𝑠 45° ൅ 𝐹஻஼ cos 45°  ൌ  0 

𝐹஻஺ ൌ  120 kN              
 
Determining forces in members due to redundant 𝐹஺஽ ൌ 1. 
 

൅↑ ෍ 𝐹௬ ൌ  0: cos 45° ൅ 𝐹஽஻ ൌ  0 

𝐹஽஻ ൌ  െ cos 45° kN ൌ  െ0.7071 kN 

൅→ ෍ 𝐹௫ ൌ  0: െ 𝐹஽ா െ cos 45°  ൌ  0 

F஻஼ 

60 kN 

45° 
F஼஽ C 

Joint C 

F஽஻ 

F஽ா
D 

F஽஼

Joint D 

B F஻஺

F஻஼ 

F஻஽ 
F஻ா

45° 

Joint B 

F஽஻ 

F஽ா
D 

F஽஼

Joint D 

1kN 

0 



𝐹஽ா ൌ  െ0.7071 kN              
 
 

൅↑ ෍ 𝐹௬ ൌ  0: െ𝐹஻ா 𝑐𝑜𝑠 45°െ𝐹஻஽ ൌ  0 

𝐹஻ா ൌ  െ ிಳವ

େ୭ୱ ସହ°
 ൌ  ଴.଻଴଻ଵ

଴.଻଴଻ଵ
 ୀ ଵ ୩୒ 

൅→ ෍ 𝐹௫ ൌ  0: െ 𝐹஻஺ െ 𝐹஻ா cos 45°  ൌ  0 

 𝐹஻஺ ൌ  െ0.7071 kN      
 
The determination of the member-axial forces can be conveniently performed in a tabular form, 
as shown in Table 10.4.    
 
Table 10.4.  

Member Length ሺmሻ N ሺkNሻ n஺஽ሺkNሻ Nn஺஽𝐿 n஺஽
ଶ 𝐿 

AB 4 120 െ0.7071 െ339.41 2.0 
AD 5.66 0 1 0 5.66 
BE 5.66 െ84.85 1 െ480.25 5.66 
BD 4 0 െ0.7071 0 2 
BC 5.66 84.85 0 0 0 
CD 4 െ60 0 0 0 
DE 4 െ60 െ0.7071 169.7 2 

    െ649.96 17.32 
 
 
Compatibility equation. 

       ∆ଵ௉ ൅ 𝑋ଵ𝛿ଵଵ ൌ  0 

         𝐹஺஽ ൌ  𝑋ଵ ൌ  െ ∆భ೛
ഃభభ

 ൌ  లరవ.వల
భళ.యమ

 ൌ  37.53 kN     
 

 

B F஻஺

F஻஼ 

F஻஽ 
F஻ா 

45° 

Joint B 

0 

Force Method of Analysis of Statically Indeterminate Structures Chapter Summary 

Force method: The force method or the method of consistent deformation is based on the 
equilibrium of forces and compatibility of structures. The method entails first selecting the 
unknown redundants for the structure and then removing the redundant reactions or members to 
obtain the primary structure.  
 
Compatibility equations: The compatibility equations are formulated and used together with the 
equations of equilibrium to determine the unknown redundants. The number of the compatibility 
equations must match the number of the unknown redundants. Once the unknown redundants are 
determined, the structure becomes determinate. Methods of computation of compatibility or 



flexibility coefficients, such as the method of integration, the graph multiplication method, and the 
use of deflection tables, are solved in the chapter.  
 
Mohr integral for computation of flexibility coefficients for beams and frames: 
 
                   ∆஻௉ൌ ׬  ಾ೘

ಶ಺
𝑑𝑥  

 

                   𝛿஻஻ ൌ ׬  ೘మ

ಶ಺
𝑑𝑥 

 

                   𝜃஺௉ ൌ ׬  ಾ೘ഇ
ಶ಺

𝑑𝑥  
 

                   𝛼஺஺ ൌ ׬  ೘ഇ
మ

ಶ಺
𝑑𝑥 

Maxwell-Betti law of reciprocal deflections: The Maxwell-Betti law helps reduce the 
computational efforts required to obtain the flexibility coefficients for the compatibility equations. 
This law states that the linear displacement at point A due to a unit load applied at B is equal in 
magnitude to the linear displacement at point B due to a unit load applied at A for a stable elastic 
structure. This law is expressed as follows: 

𝛿஺஻ ൌ 𝛿஻஺ 

 
 
 

Practice Problems 

10.1 Using the method of consistent deformation, compute the support reactions and draw the 
shear force and the bending moment diagrams for the beams shown in Figures P10.1 through 
P10.4. Choose the reaction at the interior support B as the unknown redundant.  
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Fig.  P10.1. Beam.         𝐸𝐼 ൌ  constant 
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Fig. P10.2. Beam.     𝐸𝐼 ൌ  constant 

 
 
 
 
 
 

Fig.  P10.3. Beam.       𝐸𝐼 ൌ constant 
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Fig. P10.4. Beam. 𝐸𝐼 ൌ  constant 



 
 
 
 
10.2 Using the method of consistent deformation, compute the support reactions and draw the 
shear force and the bending moment diagrams for the frames shown in Figures P10.5 through 
P10.8. Choose the reaction(s) at any of the supports as the unknown redundant(s). EI = constant. 
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Fig.  P10.5. Frame. 
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Fig. P10.6. Frame. 
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Fig.  P10.7. Frame. 

 
10.3 Using the method of consistent deformations, determine the reactions and the axial forces in 
the members of the trusses shown in Figures P10.9 through P10.13. 
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Fig.  P10.9. Truss.        𝐸𝐴 ൌ constant 
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Chapter 11 

Slope-Deflection Method of Analysis of Indeterminate 
Structures 
 
11.1 Introduction 
 
In 1915, George A. Maney introduced the slope-deflection method as one of the classical methods 
of analysis of indeterminate beams and frames. The method accounts for flexural deformations, 
but ignores axial and shear deformations. Thus, the unknowns in the slope-deflection method of 
analysis are the rotations and the relative joint displacements. For the determination of the end 
moments of members at the joint, this method requires the solution of simultaneous equations 
consisting of rotations, joint displacements, stiffness, and lengths of members.  
 
11.2 Sign Conventions 
 
An end moment M is considered positive if it tends to rotate the member clockwise and negative 
if it tends to rotate the member counter-clockwise. The rotation 𝜃 of a joint is positive if its tangent 
turns in a clockwise direction. The rotation of the chord connecting the ends of a member ൫∆

೗
൯, the 

displacement of one end of a member relative to the other, is positive if the member turns in a 
clockwise direction. 
  

11.3 Derivation of Slope-Deflection Equations 
 
To derive the slope-deflection equations, consider a beam of length L and of constant flexural 
rigidity EI loaded as shown in Figure 11.1a. The member experiences the end moments 𝑀஺஻ and 
𝑀஻஺ at A and B, respectively, and undergoes the deformed shape shown in Figure 11.1b, with the 
assumption that the right end B of the member settles by an amount ∆. The end moments are the 
summation of the moments caused by the rotations of the joints at the ends A and B (𝜃஺ and 𝜃஻ሻ of 
the beam, the chord rotation ൫𝜓 ൌ ∆

೗
൯, and the fixity at both ends referred to as fixed end moments 

ሺ𝑀஺஻
ி  and 𝑀஻஺

ி ሻ.  
 
The rotations at the joints of the beam can be expressed mathematically as follows:  
 
                𝜃஺ ൌ 𝛽஺ ൅ 𝜓                                                                                                                (11.1) 
 
                𝜃஻ ൌ 𝛽஻ ൅ 𝜓                                                                                                              (11.2) 
 
where 
 
𝛽஺, 𝛽஻ ൌ end rotations caused by moments 𝑀஺஻ and 𝑀஻஺, respectively. 



𝜓 ൌ chord rotation caused by settlement of end 𝐵. 
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Fig.  11.1. Beam. 
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Fig.  11.2. End moments due to rotations 𝛽஺ and 𝛽஻.
 

𝑀஺஻ 



According to the moment-area theorem, the change in slope for a particular beam equals the end 
shear force of the beam when it is loaded with the ಾ

ಶ಺
 diagram. Thus, for the beam under 

consideration, the rotations 𝛽஺ and 𝛽஻, shown in Figure 11.2, are obtained as follows: 

                  ൅ ∑ 𝑀஻ ൌ  0; െ𝛽஺𝐿 ൅ ൫భ
మ
൯൫ಾಲಳ

ಶ಺
൯ሺ𝐿ሻ൫మ

య
𝐿൯ െ ൫భ

మ
൯൫ಾಳಲ

ಶ಺
൯ሺ𝐿ሻ൫భ

య
𝐿൯  ൌ  0   

              𝛽஺ ൌ  
ቀ

భ
మቁ൬

ಾಲಳ
ಶ಺ ൰ሺಽሻቀ

మ
యಽቁషቀ

భ
మቁ൬

ಾಳಲ
ಶ಺ ൰ሺಽሻቀ

భ
యಽቁ

ಽ
 

                    ൌ ಽ
లಶ಺

ሺ2𝑀஺஻ െ 𝑀஻஺ሻ                                                                                             (11.3) 

Similarly, taking the moment about end A to determine 𝛽஻ suggests the following:  

                 ൅ ∑ 𝑀஺ ൌ  0; 𝛽஻𝐿 ൅ ൫భ
మ
൯൫ಾಳಲ

ಶ಺
൯ሺ𝐿ሻ൫మ

య
𝐿൯ െ ൫భ

మ
൯൫ಾಲಳ

ಶ಺
൯ሺ𝐿ሻ൫భ

య
𝐿൯  ൌ  0   

              𝛽஻ ൌ 
ቀ

భ
మቁ൬

ಾಳಲ
ಶ಺ ൰ሺಽሻቀ

మ
యಽቁషቀ

భ
మቁ൬

ಾಲಳ
ಶ಺ ൰ሺಽሻቀ

భ
యಽቁ

ಽ
 

                    ൌ  ಽ
లಶ಺

ሺ2𝑀஻஺ െ 𝑀஺஻ሻ                                                                                            (11.4) 
 
Solving equations 11.3 and 11.4 suggests the following:  
               
                     𝑀஺஻ ൌ రಶ಺

ಽ
𝛽஺ ൅ మಶ಺

ಽ
𝛽஻                                                                                            (11.5) 

  
                     𝑀஻஺ ൌ మಶ಺

ಽ
𝛽஺ ൅ రಶ಺

ಽ
𝛽஻                                                                                            (11.6) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝐿 

𝐵 𝐴 

𝑀஺஻ 

𝑀஻஺ 

𝜓 

ெಳಲ

ாூ
 

ெಲಳ

ாூ
 

ሺ𝑎ሻ 

ሺ𝑏ሻ 

Fig.  11.3. End moments due to end rotations ሺ𝛽஺ and 𝛽஻ሻ and chord rotation ሺ𝜓ሻ. 
 

∆



Solving equations 11.1 and 11.2 for 𝛽஺ and 𝛽஻  and substituting them into equations 11.5 and 11.6 
suggests the following:  
 
                   𝑀஺஻ ൌ రಶ಺

ಽ
ሺ𝜃஺ െ 𝜓ሻ ൅ మಶ಺

ಽ
ሺ𝜃஻ െ 𝜓ሻ                                                                        (11.7) 

 
           
                   𝑀஻஺ ൌ మಶ಺

ಽ
ሺ𝜃஺ െ 𝜓ሻ ൅ రಶ಺

ಽ
ሺ𝜃஻ െ 𝜓ሻ                                                                        (11.8) 

 
Putting 𝜓 ൌ ∆

ಽ
 into equations 10.10 and 10.11 suggests the following:  

 
                  𝑀஺஻ ൌ రಶ಺

ಽ
𝜃஺ ൅ మಶ಺

ಽ
𝜃஻ െ లಶ಺

ಽమ ∆                                                                                     (11.9) 
              
                  𝑀஻஺ ൌ మಶ಺

ಽ
𝜃஺ ൅ రಶ಺

ಽ
𝜃஻ െ లಶ಺

ಽమ ∆                                                                                    (11.10) 
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Fig.  11.4. End moment due to end rotations ሺ𝛽஺ and 𝛽஻ሻ , chord rotation ሺ𝜓ሻ, and fixed-end moments ሺ𝑀஺஻
ி

and 𝑀஻஺
ி ሻ. 

 
 
The final end moments can then be computed as the summation of the moments caused by slopes, 
deflections, and fixed-end moments, as follows:  
 
 
                                                                                                                                                (11.11) 
 
            
  
              
where 
 
𝐾 ൌ  ಺

ಽ
 ൌ stiffness factor. 

 
11.4 Modification for Pin-Supported End Span 
 
The analysis of beams or frames supported by a pin or roller at the far end of the span is simplified 
by using the modified slope-deflection equation derived below. Using the modified equation  
 

 

𝑀஺஻ ൌ  2𝐸𝐾ሺ2𝜃஺ ൅ 𝜃஻ െ 3𝜓ሻ ൅ 𝑀஺஻
ி   

𝑀஻஺ ൌ  2𝐸𝐾ሺ𝜃஺ ൅ 2𝜃஻ െ 3𝜓ሻ ൅ 𝑀஻஺
ி  
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Fig.  11.5. Propped cantilever beam. 
 
 
reduces the amount of computational work, as the equation is applied only once to the span with a 
pin or roller at the far end. 
 
Consider the propped cantilever beam shown in Figure 11.5. The slope-deflection equations for 
the end moments are as follows:  
           
                        𝑀஺஻ ൌ  2𝐸𝐾ሺ2𝜃஺ ൅ 𝜃஻ െ 3𝜓ሻ ൅ 𝑀஺஻

ி                                                             (11.12) 

                        𝑀஻஺ ൌ  0 ൌ  2𝐸𝐾ሺ𝜃஺ ൅ 2𝜃஻ െ 3𝜓ሻ ൅ 𝑀஻஺
ி                                                     (11.13) 

Solving equation 11.13 for 𝜃஻ and substituting it into equation 11.12 suggests the following:   
 
                                                                                                                                                (11.14) 
 
           Equation 11.14 is the modified slope-deflection equation when the far end is supported by 
a pin or roller. 
 
11.5 Analysis of Indeterminate Beams  
 
The procedure for the analysis of indeterminate beams by the slope-deflection method is 
summarized below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑀஺஻ ൌ  3𝐸𝐾ሺ𝜃஺ െ 𝜓ሻ ൅ ቀ𝑀஺஻
ி െ ெಳಲ

ಷ

ଶ
ቁ 

• Determine the fixed-end moments for the members of the beam. 
• Determine the rotations of the chord if there is any support settlement. 
• Write the slope-deflection equation for the members’ end moments in 

terms of unknown rotations. 
• Write the equilibrium equations at each joint that is free to rotate in 

terms of the end moments of members connected at that joint. 
• Solve the system of equations obtained simultaneously to determine the 

unknown joint rotations. 
• Substitute the computed joint rotations into the equations obtained in 

step 3 to determine the members’ end moments. 
• Draw a free-body diagram of the indeterminate beams indicating the 

end moments at the joint. 
• Draw the shearing force diagrams of the beam by considering the free-

body diagram of each span of the beam in the case of a multi-span 
structure.  

Procedure for Analysis of Indeterminate Beams and Non-Sway 
 Frames by the Slope-Deflection Method 



11.6 Analysis of Indeterminate Frames 
 
Indeterminate frames are categorized as frames with or without side-sway. A frame with side-sway 
is one that permits a lateral moment or a swaying to one side due to the asymmetrical nature of its 
structure or loading. The analysis of frames without side-sway is similar to the analysis of beams 
considered in the preceding section, while the analysis of frames with side-sway requires taking 
into consideration the effect of the lateral movement of the structure.  
 
11.6.1 Analysis of Frames with Side-Sway 
 
Consider the frame shown in Figure 11.6 for an illustration of the effect of side-sway on a frame. 
Due to the asymmetrical application of the loads, there will be a lateral displacement Δ  to the right 

at B and C, which subsequently will cause chord rotations 𝜓஺஻ ቀ ౴
ಽಲಳ

ቁ and 𝜓஽஼ ቀ ౴
ಽವ಴

ቁ  in columns 

AB and DC, respectively. These rotations must be considered when writing the slope-deflection 
equations for the columns, as will be demonstrated in the solved examples. 
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Fig.  11.6. Frame.  

 Example 11.1 

Using the slope-deflection method, determine the end moments and the reactions at the supports 
of the beam shown in Figure 11.7a  and draw the shearing force and the bending moment 
diagrams. EI = constant. 
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Fig.  11.7. Beam. ሺ𝑎ሻ



Solution 
 
Fixed-end moments. 

The Fixed-end moments (FEM) using Table 11.1 are computed as follows: 

𝐹𝐸𝑀஺஻ ൌ  െ ௪୐మ

ଵଶ
ൌ  െ ଺ହൈସమ

ଵଶ
ൌ  െ86.67 kN. m 

𝐹𝐸𝑀஻஺ ൌ  ௪୐మ

ଵଶ
ൌ  86.67 kN. m 

𝐹𝐸𝑀஻஼ ൌ  െ ଷହൈସమ

ଵଶ
ൌ  െ46.67 kN. m 

𝐹𝐸𝑀஼஻ ൌ  46.67 kN. m 

Slope-deflection equations. As 𝜃஺ ൌ 𝜃஼ ൌ  0 due to fixity at both ends and 𝜓஺஻ ൌ 𝜓஻஼ ൌ  0 as 
no settlement occurs, equations for member end moments are expressed as follows:  

          𝑀஺஻ ൌ  ము౅
ಽ

ሺ2𝜃஺ ൅ 𝜃஻ െ 3𝜓ሻ ൅ 𝐹𝐸𝑀஺஻ 

                        2EK𝜃஻ െ 86.67                                                                                                   (1) 

          𝑀஻஺ ൌ ము౅
ಽ

ሺ𝜃஺ ൅ 2𝜃஻ െ 3𝜓ሻ ൅ 𝐹𝐸𝑀஻஺ 

                       4EK𝜃஻ ൅ 86.67                                                                                                    (2) 

          𝑀஻஼ ൌ ము౅
ಽ

ሺ2𝜃஻ ൅ 𝜃஼ െ 3𝜓ሻ ൅ 𝐹𝐸𝑀஻஼ 

                       4EK𝜃஻ െ 46.67                                                                                                    (3)       

          𝑀஼஻ ൌ ము౅
ಽ

ሺ𝜃஻ ൅ 2𝜃஼ െ 3𝜓ሻ ൅ 𝐹𝐸𝑀஼஻ 

                       2EK𝜃஻ ൅ 46.67                                                                                                    (4)  

Joint equilibrium equation. 
 
Equilibrium equation at joint B is as follows: 
 

෍ M஻ ൌ  M஻஺ ൅ M஻஼ ൌ  0 

      4EK𝜃஻ ൅ 86.67 ൅  4EK𝜃஻ െ 46.67 ൌ  0     

      𝜃஻ ൌ  െ ఱ
ుే

 

 



Final end moments. 

Substituting 𝜃஻ ൌ  െ ఱ
ుే

 into equations 1, 2, 3, and 4 suggests the following:  

          𝑀஺஻ ൌ 2EK൫െ ఱ
ుే

൯ െ 86.67 ൌ  െ96.67 kN. m          

         𝑀஻஺ ൌ  4EK൫െ ఱ
ుే

൯ ൅ 86.67 ൌ  66.67 kN. m 

         𝑀஻஼ ൌ 4EK൫െ ఱ
ుే

൯ െ 46.67 ൌ  െ66.67 kN. m 

         𝑀஼஻ ൌ 2EK൫െ ఱ
ుే

൯ ൅ 46.67 ൌ  36.67 kN. m 

Shearing force and bending moment diagrams. 
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Shear force and bending moment for segment AB. 
 
First compute the reaction at support A, as follows: 
 
↶ ൅ ∑ 𝑀஻ ൌ  0: െ4𝐴௬ ൅ 96.67 ൅ ሺ65ሻሺ4ሻሺ2ሻ െ 66.67 ൌ  0 

𝐴௬ ൌ  137.5 kN 

Calculate the shear force, as follows: 

𝑉 ൌ  137.5 െ 65𝑥 

When 𝑥 ൌ  0, 𝑉 ൌ  137.5 kN 



When 𝑥 ൌ  4 m, 𝑉 ൌ  െ122.5 kN 

Find the moment, as follows: 

𝑀 ൌ  137.5𝑥 െ ሺ଺ହሻሺ௫ሻమ

ଶ
െ 96.67 

When 𝑥 ൌ  0, 𝑀 ൌ  െ96.67 kN. m 

When 𝑥 ൌ  4 m, 𝑀 ൌ  െ66.67 kN. m 

Shear force and bending moment for segment AB. 
 
First determine the reaction at B, as follows: 
 
↶ ൅ ∑ 𝑀஼ ൌ  0: െ4𝐵௬ ൅ 66.67 ൅ ሺ35ሻሺ4ሻሺ2ሻ െ 36.67 ൌ  0 

   𝐵௬ ൌ  77.5 kN 

Calculate the shear force, as follows: 

𝑉 ൌ  77.5 െ 35𝑥 

When 𝑥 ൌ  0, 𝑉 ൌ  77.5 kN. 

When 𝑥 ൌ  4 m, 𝑉 ൌ  െ62.5 kN. 

Find the moment, as follows: 

𝑀 ൌ  77.5𝑥 െ ሺଷହሻሺ௫ሻమ

ଶ
െ 66.67 

When 𝑥 ൌ  0, 𝑀 ൌ  െ66.67 kN. m 

When 𝑥 ൌ  4 m, 𝑀 ൌ  െ36.67 kN. m 
 
Shear force and bending moment diagrams. 
 
 
 

 

 

 

 

137.5 kN 

122.5 kN 

77.5 kN 

62.5 kN 

൅ ൅ 
െെ 

ሺeሻ Shearing force diagram for the 
indeterminate beam  

96.67 kN.m 
66.67 kN.m 

36.67 kN.m 

ሺfሻ Bending moment diagram for the 
indeterminate beam  



 

 

 
Example 11.2 

Using the slope-deflection method, determine the end moments and the reactions at the supports 
of the beam shown in Figure 11.8a, and draw the shearing force and the bending moment diagrams. 
EI = constant. 

 

 

 

 

 

 

4 kips/ft 

6ft 

𝐴 
𝐵

12 ft 

24 kips 

𝐶 

6ft 

I 3I 

Fig.  11.8. Beam. ሺ𝑎ሻ
 
Solution 
 
Relative stiffness. 
 

ሺ𝐾஺஻ሻ: ሺ𝐾஻஼ሻ  ൌ  ቀ ୍
ଵଶ

ቁ : ቀଷ୍
ଵଶ

ቁ  ൌ  1: 3 

Fixed-end moments. 

𝐹𝐸𝑀஺஻ ൌ  െ ௪୐మ

ଶ଴
ൌ  െ ሺସሻሺଵଶሻమ

ଶ଴
ൌ  െ28.8 k. ft 

𝐹𝐸𝑀஻஺ ൌ  ೢైమ

యబ
ൌ  ሺరሻሺభమሻమ

యబ
ൌ  19.2 k.ft 

𝐹𝐸𝑀஻஼ ൌ  െ ୔୐
଼

ൌ  െ ଶସൈଵଶ
଼

ൌ  െ36 k. ft 

𝐹𝐸𝑀஼஻ ൌ  ୔୐
଼

ൌ  36 k. ft 

Slope-deflection equations. 
 
Noting that 𝑀஼஻ ൌ  Ψ ൌ  0, equations for member end moments can be expressed as follows:  
 
𝑀஺஻ ൌ  ሺଶሻሺଵሻሺ2𝜃஺ ൅ 𝜃஻ െ 3𝜓ሻ ൅ 𝐹𝐸𝑀஺஻ 



        ൌ 2𝜃஻ െ 28.8                                                                                                                  (1) 

 𝑀஻஺ ൌ  ሺଶሻሺ1ሻሺ𝜃஺ ൅ 2𝜃஻ െ 3𝜓ሻ ൅ 𝐹𝐸𝑀஻஺ 

          ൌ  4𝜃஻ ൅ 19.2                                                                                                                (2) 

𝑀஻஼ ൌ  3ሺ3ሻሺ𝜃஻ െ 𝜓ሻ ൅ 𝐹𝐸𝑀஻஼ െ ಷಶಾ಴ಳ
మ

   

        ൌ  3ሺ3ሻ𝜃஻  െ 36 െ యల
మ

 

        ൌ  9𝜃஻ െ 54                                                                                                                      (3)               

Joint equilibrium equation. 
 
The equilibrium equation at joint B is as follows: 
 

෍ 𝑀஻ ൌ 𝑀஻஺ ൅ 𝑀஻஼ ൌ  0 

         4𝜃஻ ൅ 19.2 ൅ 9𝜃஻ െ 54 ൌ  0                          

           𝜃஻ ൌ  యర.ఴ
భయ

 ൌ  2.68                 

Final end moments. 
 
Substituting the computed value of 𝜃஻ into equations 1, 2, and 3 suggests the following:  
 
         𝑀஺஻ ൌ  2ሺ2.68ሻ െ 28.8 ൌ െ23.4 k. ft          

         𝑀஻஺ ൌ 4𝜃஻ ൅ 19.2 ൌ 4ሺ2.68ሻ ൅ 19.2 ൌ 29.9 k. ft 

         𝑀஻஼ ൌ 9𝜃஻ െ 54 ൌ 9ሺ2.68ሻ െ 54 ൌ െ29.9 k. ft                        

         𝑀஼஻ ൌ  0 

Shear force and bending moment diagrams. 

 

 

 

 

 

4 kips/ft 

𝐴 𝐵 
12 ft 29.9 k.ft 23.4 k.ft 

8.54 kips 15.46 kips 

ሺ𝑏ሻ 

Shear force and bending moment for segment AB. 

6ft 

𝐵 

24 kips 

𝐶 

6ft 
29.9 k.ft 

14.5 kips 9.5 kips 
ሺ𝑐ሻ



↶ ൅ ∑ 𝑀஺ ൌ  0: 12𝐵௬ ൅ 23.44 െ ൫భ
మ
൯ሺ12ሻሺ4ሻ൫భ

య
ൈ 12൯ െ 29.9 ൌ  0                   

   𝐵௬ ൌ  8.54 kips 

↑ ൅ ∑ 𝐹௬ ൌ  8.54 ൅ 𝐴௬ െ ൫భ
మ
൯ሺ12ሻሺ4ሻ ൌ  0   

𝐴௬ ൌ  15.46 kips   

𝑉 ൌ  െ8.54 ൅ ቀଵ
ଶ
ቁ ሺ𝑥ሻ ቀ௫

ଷ
ቁ  ൌ  െ8.54 ൅ ௫మ

଺
 

When 𝑥 ൌ  0, 𝑉 ൌ  െ8.54 kips 

When 𝑥 ൌ  12 ft, 𝑉 ൌ  15.46 kips 

𝑀 ൌ  8.54𝑥 െ ቀଵ
ଶ
ቁ ሺ𝑥ሻ ቀ௫

ଷ
ቁ ቀଵ

ଷ
ൈ 𝑥ቁ െ 29.9 ൌ  8.54𝑥 െ ሺ௫ሻయ

ଵ଼
െ 29.9 

When 𝑥 ൌ  0, 𝑀 ൌ  െ29.9 k. ft 

When 𝑥 ൌ  12ft, 𝑀 ൌ  െ23.4 k. ft 

Shear force and bending moment for segment BC. 

↶ ൅ ∑ 𝑀஻ ൌ  0: 12𝐶௬ ൅ 29.9 െ ሺ24ሻሺ6ሻ  ൌ  0 

𝐶௬ ൌ  9.5 kips 

↑ ൅ ෍ 𝐹௬ ൌ  0 

𝐵௬  ൅ 9.5 െ 24 ൌ  0 

𝐵௬  ൌ  14.5 kips 

     0 ൏ 𝑥 ൏ 6 ft 

𝑉 ൌ  14.5 kips 

𝑀 ൌ  14.5𝑥 െ 29.9 

When 𝑥 ൌ  0, 𝑀 ൌ  െ29.9 k. ft 

When 𝑥 ൌ  6 ft, 𝑀 ൌ  57.10 k. ft 

 

 



 

 

 

 

 

 

15.46 kips 

8.54 kips 

14.5 kips 

9.5 kips 

൅ 
൅ 

െെ 

ሺdሻ Shearing force for the Indeterminate
beam 

 

 

23.4 k.ft 
29.9 k.ft 

57.1 k.ft 

ሺeሻ Bending moment for the Indeterminate
beam

 Example 11.3 

Using the slope-deflection method, determine the end moments of the beam shown in Figure 11.9a. 
Assume support B settles 1.5 in, and draw the shear force and the bending moment diagrams. The 
modulus of elasticity and the moment of inertia of the beam are 29,000 ksi and 8000 in4, 
respectively. 

 

 

 

 

 

3 m 

𝐷𝐴 
𝐵 

3 m 3 m 

C 

5 kN/m 

20 kN 

Fig.  11.9. Beam. 

ሺ𝑎ሻ

Solution 
 
Fixed-end moments. 
The Fixed-end moments (FEM) using Table 11.1 are computed as follows: 

𝐹𝐸𝑀஺஻ ൌ  െ ௪୐మ

ଵଶ
ൌ  െ ହൈଷమ

ଵଶ
ൌ  െ3.75 kN. m 

𝐹𝐸𝑀஻஺ ൌ  ௪୐మ

ଵଶ
ൌ  3.75 kN. m 

𝐹𝐸𝑀஻஼ ൌ  െ3.75 kN. m 

𝐹𝐸𝑀஼஻ ൌ  3.75 kN. m 



𝐹𝐸𝑀஼஽ ൌ  െ୔ୟୠమ

௅మ ൌ ሺଶ଴ሻሺଵ.ହሻሺଵ.ହሻమ

ଷమ ൌ  െ7.5 kN. m 

𝐹𝐸𝑀஽஼ ൌ  ୔௔మୠ
௅మ ൌ  ሺଶ଴ሻሺଵ.ହሻሺଵ.ହሻమ

ଷమ ൌ  7.5 kN. m 

Slope-deflection equations. 

At 𝜃஺ ൌ  𝜃஽ ൌ  𝜓 ൌ  0, the equations for member end moments are expressed as follows:  

𝑀஺஻ ൌ  ଶ୉୍
௅

ሺ2𝜃஺ ൅ 𝜃஻ െ 3𝜓ሻ െ 𝐹𝐸𝑀஺஻ 

        ൌ 2EK𝜃஻ െ 3.75                                                                                                               (1) 

 𝑀஻஺ ൌ  ము౅
ಽ

ሺ𝜃஺ ൅ 2𝜃஻ െ 3𝜓ሻ ൅ 𝐹𝐸𝑀஻஺ 

         ൌ  4EK𝜃஻ ൅ 3.75                                                                                                               (2) 

𝑀஻஼ ൌ ଶாூ
௅

ሺ2𝜃஻ ൅ 𝜃஼ െ 3𝜓ሻ െ 𝐹𝐸𝑀஻஼ 

        = 4EK𝜃஻ ൅ 2EK𝜃஼ െ 3.75                                                                                                 (3)       

M஼஻ ൌ ଶ୉୍
௅

ሺ𝜃஻ ൅ 2𝜃஼ െ 3𝜓ሻ ൅ FEM஼஻ 

         ൌ  2EK𝜃஻ ൅ 4EK𝜃஼ ൅ 3.75                                                                                               (4)  

M஼஽ ൌ ଶ୉୍
௅

ሺ2𝜃஼ ൅ 𝜃஽ െ 3𝜓ሻ െ FEM஼஽ 

         =  4EK𝜃஼ െ 7.5                                                                                                                  (5)       

M஽஼ ൌ ଶ୉୍
௅

ሺ𝜃஼ ൅ 2𝜃஽ െ 3𝜓ሻ ൅ FEM஽஼ 

        ൌ  2EK𝜃஼ ൅ 7.5                                                                                                                  (6)  

Joint equilibrium equation. 
 
The equilibrium equation at joint B is as follows: 
 

෍ 𝑀஻ ൌ  𝑀஻஺ ൅ 𝑀஻஼ ൌ  0 

4𝐸𝐾𝜃஻ ൅ 3.75 ൅ 4EK𝜃஻ ൅ 2𝐸𝐾𝜃஼ െ 3.75 ൌ  0        

8𝐸𝐾𝜃஻ ൅ 2𝐸𝐾𝜃஼  ൌ  0                                                                                                                 (7)  

 



෍ 𝑀஼ ൌ  𝑀஼஻ ൅ 𝑀஼஽ ൌ  0 

2𝐸𝐾𝜃஻ ൅ 4𝐸𝐾𝜃஼ ൅ 3.75 ൅ 4𝐸𝐾𝜃஼ െ 7.5 ൌ  0     

2𝐸𝐾𝜃஻ ൅ 8𝐸𝐾𝜃஼ െ 3.75 ൌ  0                                                                                                     (8) 

 

Solving equations 7 and 8 simultaneously suggests the following: 

𝜃஻ ൌ  െ బ.భమఱ
ుే

   and 𝜃஼ ൌ   బ.ఱ
ుే

 

Final end moments. 
 
Substituting the obtained values of  𝜃஻ and 𝜃஼ into the slope-deflection equations suggests the 
following end moments: 
𝑀஺஻ ൌ  2EK൫െ బ.భమఱ

ుే
൯ െ 3.75 ൌ  െ4.00 kN. m          

𝑀஻஺ ൌ  4EK൫െ బ.భమఱ
ుే

൯ ൅ 3.75 ൌ  3.25 kN. m 

𝑀஻஼ ൌ 4EK൫బ.భమఱ
ుే

൯ ൅ 2ሺ0.5ሻ െ 3.75 ൌ  െ3.25 kN. m 

𝑀஼஻ ൌ 2EK൫െబ.భమఱ
ుే

൯ ൅ 4ሺ0.5ሻ ൅ 3.75 ൌ  5.50 kN. m 

𝑀஼஽ ൌ  4EK ቀെ଴.ହ
୉୏

ቁ െ 7.5 ൌ  െ5.50 kN. m  

𝑀஽஼ ൌ  2EK൫െబ.ఱ
ుే

൯ ൅ 7.5 ൌ  8.5 kN. m 

 

 Example 11.4 

Using the slope-deflection method, determine the member end moments of the beam of the 
rectangular cross section shown in Figure 11.10a. Assume that support B settles 2 cm. The modulus 
of elasticity and the moment of inertia of the beam are E = 210,000 N/mmଶ and 4.8 ൈ
10ସ mm,ସ  respectively. 
 

 

 

 

 

3 m 

𝐴 
𝐵

2 m 

120 kN 

𝐶 

3 m 

250 kN 

4 m 

Fig.  11.10. Rectangular cross section of beam. 



Solution 
The Fixed-end moments (FEM) using Table 11.1 are computed as follows: 

 

𝐹𝐸𝑀஺஻ ൌ  െ ௉௔௕మ

௅మ ൌ  െ ሺଶହ଴ሻሺଶሻሺସሻమ

଺మ ൌ  െ222.22 kN. m 

𝐹𝐸𝑀஻஺ ൌ  ௉௔మ௕
௅మ ൌ  ሺଶହ଴ሻሺଶሻమሺସሻ

଺మ ൌ  111.1 kN. m 

𝐹𝐸𝑀஻஼ ൌ  െ
𝑃𝐿
8

ൌ  െ  ሺଵଶ଴ሻሺ଺ሻ
଼

ൌ  െ 90 kN. m 

𝐹𝐸𝑀஼஻ ൌ  
𝑃𝐿
8

 ൌ ሺଵଶ଴ሻሺ଺ሻ
଼

ൌ  90 kN. m 

 

Slope-deflection equations. 
 
As 𝜃஼ ൌ  0, equations for member end moments are expressed as follows:  
 
𝑀஻஺ ൌ  3𝐸𝐾ሺ𝜃஻ െ 𝛹ሻ ൅ 𝐹𝐸𝑀஻஺ െ ಷಶಾಲಳ

మ
   

         ൌ  3𝐸𝐾 ቀ𝜃஻ െ ଴.଴ଶ

଺
ቁ ൅ 111.1 െ ሺషమమమ.మሻ

మ
   

         ൌ  3𝐸𝐾𝜃஻ െ 0.01𝐸𝐾 ൅ 222.2                                                                                 (1) 
𝑀஻஼ ൌ  ଶா௄ሺ2𝜃஻ ൅ 𝜃஼ െ 3𝜓ሻ ൅ 𝐹𝐸𝑀஻஼ 

         ൌ  4EK𝜃஻ ൅ 2𝐸𝐾൫െ3 ൈ ሺషబ.బమሻ
ల

൯ െ 90                                                                                   

         ൌ  4EK𝜃஻ ൅ 0.02𝐸𝐾 െ 90                                                                                                   (2)  
𝑀஼஻ ൌ  2𝐸𝐾ሺ𝜃஻ ൅ 2𝜃஼ െ 3𝜓ሻ ൅ 𝐹𝐸𝑀஼஻ 

         ൌ  2𝐸𝐾𝜃஻ ൅ 0.02 𝐸𝐾 ൅ 90                                                                                                 (3)                         

 
Joint equilibrium equation. 
 
The equilibrium equation at joint B is written as follows: 
 

෍ 𝑀஻ ൌ 𝑀஻஺ ൅ 𝑀஻஼ ൌ  0 

3𝐸𝐾𝜃஻ െ 0.01𝐸𝐾 ൅ 222.2 ൅ 4EK𝜃஻ ൅ 0.02𝐸𝐾 െ 90 ൌ  0 



7𝐸𝐾𝜃஻ ൅ 0.01𝐸𝐾 ൅ 132.2 ൌ  0                                                                                                  (4) 

Solving equation 4 for 𝜃஻ suggests the following:  

𝜃஻ ൌ  െ0.0014 െ ଵ଼.଼ଽ
ா௄

ൌ  െ0.0014 െ ଵ଼.଼ଽ
ଶଵ଴ൈଵ଴వ௄

 

𝐸𝐾 ൌ  210 ൈ 10ଽ ൈ ସ.଼ൈଵ଴ర

ሺଵ଴భమሻሺ଺ሻ
  ୀ ଵ଺଼଴ 

𝜃஻ ൌ  െ0.0014 െ భఴ.ఴవ
భలఴబ

 ൌ  െ0.0126 rad 

Final end moments. 
 
Substituting the obtained value of  𝜃஻ into equations 1, 2, and 3 suggests the following end 
moments: 
 
𝑀஺஻ ൌ 0      

𝑀஻஺ ൌ  141.9 kN. m       

 𝑀஻஼ ൌ  4EK൫బ.భమఱ
ಶ಼

൯ ൅ 2ሺ0.5ሻ െ 3.75 ൌ  െ141.07 kN. m      

 𝑀஼஻ ൌ  2EK൫െబ.భమఱ
ಶ಼

൯ ൅ 4ሺ0.5ሻ ൅ 3.75 ൌ  81.26 kN. m       

 

 

 Example 11.5 

Using the slope-deflection method, determine the member end moments and the reactions at the 
supports of the frame shown in Figure 11.11a. EI = constant.  
 

 

 

 

 

 

 

 

A௬ 

A௫

2 kips/ft 

𝐴

M஺ 

𝐶 𝐵

20 kips 

C௬ 
C௫

M஼

ሺbሻ FBD of the entire frame

3 ft 

10 ft 

𝐶 𝐵 

2 kips/ft 

𝐴 

20 kips 

3 ft 

Fig.  11.11. Frame. 

ሺ𝑎ሻ 



 

 

 

 

 

 

 

 

 

A𝑦 

A𝑥 

2 kips/ft 

𝐴 

𝐵 

M𝐴 

B𝑥 

ሺcሻ FBD of column AB

B𝑦 
M஻ 

ሺdሻ FBD of beam BC 

B𝑦 

B𝑥 

C𝑦 

𝐶 𝐵

20 kips 

M𝑐 

C𝑥 

M𝐵 

 
Solution 
 
Fixed-end moments. 

The Fixed-end moments (FEM) using Table 11.1 are computed as follows: 

𝐹𝐸𝑀஺஻ ൌ  െ ௪୐మ

ଵଶ
ൌ  െ ଶൈଵ଴మ

ଵଶ
ൌ  െ16.67 k. ft 

𝐹𝐸𝑀஻஺ ൌ  ௪௅మ

ଵଶ
ൌ  16.67 k. ft 

𝐹𝐸𝑀஻஼ ൌ  െ ௉௅

଼
ൌ  െ ଶ଴ൈ଺

଼
ൌ  െ15   

𝐹𝐸𝑀஼஻ ൌ  ௉௅

଼
ൌ  ଶ଴ൈ଺

଼
ൌ  15   

Slope-deflection equations. 
 
As 𝜃஺ ൌ  𝜃஼ ൌ  0  due to fixity at both ends and 𝜓஺஻ ൌ  𝜓஻஼ ൌ  0 since no settlement occurs, 
equations for the member end moments are expressed as follows:  
 

𝑀஺஻ ൌ ଶா௄ሺ2𝜃஺ ൅ 𝜃஻ െ 3𝜓ሻ ൅ 𝐹𝐸𝑀஺஻ 

         = 2EK𝜃஻ െ 16.67                                                                                                        (1) 

𝑀஻஺ ൌ  2𝐸𝐾ሺ𝜃஺ ൅ 2𝜃஻ െ 3𝜓ሻ ൅ 𝐹𝐸𝑀஻஺ 

         = 4EK𝜃஻ ൅ 16.67                                                                                                         (2) 

𝑀஻஼ ൌ  2𝐸𝐾ሺ2𝜃஻ ൅ 𝜃஼ െ 3𝜓ሻ ൅ 𝐹𝐸𝑀஻஼  



         = 4EK𝜃஻ െ 15                                                                                                              (3)       

𝑀஼஻ ൌ  ଶாூ
௅

ሺ𝜃஻ ൅ 2𝜃஼ െ 3𝜓ሻ ൅ 𝐹𝐸𝑀஼஻ 

         = 2EK𝜃஻ ൅ 15                                                                                                              (4)  

Joint equilibrium equation. 
 
The equilibrium equation at joint B is as follows: 
 

෍ 𝑀஻ ൌ  𝑀஻஺ ൅ 𝑀஻஼ ൌ  0 

 
4EK𝜃஻ ൅ 16.67 ൅ 4𝐸𝐾𝜃஻ െ 15 ൌ  0    
 

𝐸𝐾𝜃஻ ൌ  െ ଵ.଺଻
଼

 ൌ  െ0.209 

 
Final end moments. 
 
Substituting 𝐸𝐾𝜃஻ ൌ  െ0.209 into equations 1, 2, 3, and 4 suggests the following:  
     

𝑀஺஻ ൌ  െ17.09 k. ft      

𝑀஻஺ ൌ  15.83 k. ft       

𝑀஻஼ ൌ  െ15.83 k. ft       

𝑀஼஻ ൌ  14.58 k. ft      

 

Reactions at supports.  

 

 

 

 

 

 

 

𝐶 𝐵 

20 kips 

15.83 k. ft

C𝑥 ൌ 14.58 k. ft 9.80 k 

C𝑥 ൌ 9.87 k9.87 k

10.20 k
𝐵 

15.83 k. ft

0.20 k 

15.83 k. ft 

10.20 k 

9.87 k

9.87 k 

1



 

 

 

 

 

 

 

 

 

 

 

To determine 𝐴௫, take the moment about B in Figure 11.11c, as follows:  

൅↶ ∑ 𝑀஻ ൌ  0: 17.09 ൅ ሺ2ሻሺ10ሻሺ5ሻ െ 15.83 െ 10𝐴௫ ൌ  0  

𝐴௫ ൌ  10.13 k      

To determine 𝐴௬, take the moment about C in Figure 11.11b, as follows: 

൅↶ ∑ 𝑀஼ ൌ  0;  17.09 െ 10.13 ൈ 10 ൅ ሺ2ሻሺ10ሻሺ5ሻ ൅ 20 ൈ 3 െ 14.58 െ 6𝐴௬ ൌ  0  

𝐴௬ ൌ  10.20 k        

To determine 𝐶௬ in Figure 11.11b, consider the summation of forces in the vertical direction, as 

follows: 

൅↑ ෍ 𝐹௬ ൌ  0 

10.20 െ 20 ൅ 𝐶௬ ൌ  0 

𝐶௬ ൌ  9.80 k       

To determine 𝐶௫ in Figure 11.11b, consider the summation of forces in the horizontal direction, 
as follows: 

A𝑦 ൌ 10.20 k 

A𝑥 ൌ 10.13 k 

2 kips/ft 

𝐴 

𝐵 

M𝐴 ൌ 17.09 k. ft 

10.20 k

9.87 k 
15.83 k. ft 

ሺeሻ Member end moments, axial forces and shears



൅→ ෍ 𝐹௫ ൌ  0 

2 ൈ 10 െ 10.13 െ 𝐶௫ ൌ  0 

𝐶௫ ൌ  9.87 k       

 

 Example 11.6 

Using the slope-deflection method, determine the member end moments of the frame shown in 
Figure 11.12a. 

 

 

 

 

 

 

 

𝐵
𝐶𝐴 

𝐷

4 m 

20 kN 

6 m 

4 m 

4 m 

 

10 kN/m 

Fig. 11.12. Frame. Solution 
 
Fixed-end moments. 
The Fixed-end moments (FEM) using Table 11.1 are computed as follows: 

𝐹𝐸𝑀஺஻ ൌ  െ ௪௅మ

ଵଶ
ൌ  െ ଵ଴ൈ଺మ

ଵଶ
ൌ  െ30 kN. m 

𝐹𝐸𝑀஻஺ ൌ  ௪௅మ

ଵଶ
ൌ  30 kN. m 

𝐹𝐸𝑀஻஼ ൌ  െ ଵ଴ൈସమ

ଵଶ
ൌ  െ10.33 kN. m 

FEM஼஻ ൌ  10.33 kN. m 

𝐹𝐸𝑀஽஻ ൌ  െ ௉௅

଼
ൌ  െ ଶ଴ൈ଼

଼
ൌ  െ20 kN. m   

𝐹𝐸𝑀஻஽ ൌ  ௉௅

଼
ൌ  ଶ଴ൈ଼

଼
ൌ  20 kN. m   

 



Slope-deflection equations. 
 
As 𝜃஺ ൌ  𝜃஼ ൌ  0  due to fixity at both ends and 𝜓஺஻ ൌ  𝜓஻஼ ൌ  0 since no settlement occurs, the 
equations for member end moments can be expressed as follows:  
 
𝑀஻஺ ൌ 3𝐸𝐾ሺ𝜃஻ െ 𝜓ሻ ൅ 𝐹𝐸𝑀஻஺ െ ಷಶಾಲಳ

మ
   

        ൌ 3𝐸𝐾𝜃஻ ൅ 30 െ ሺషయబሻ
మ

 ൌ 3𝐸𝐾𝜃஻ ൅ 45                                                                   (1) 

𝑀஻஼ ൌ 2𝐸𝐾ሺ2𝜃஻ ൅ 𝜃஼ െ 3𝜓ሻ ൅ 𝐹𝐸𝑀஻஼  

        = 4EK𝜃஻ െ 10.33                                                                                                    (2)       

𝑀஼஻ ൌ ଶா௄ሺ𝜃஻ ൅ 2𝜃஼ െ 3𝜓ሻ ൅ 𝐹𝐸𝑀஼஻ 

         = 2EK𝜃஻ ൅ 10.33                                                                                                   (3)  

𝑀஽஻ ൌ 2𝐸𝐾ሺ2𝜃஽ ൅ 𝜃஻ െ 3𝜓ሻ ൅ 𝐹𝐸𝑀஽஻ 

         ൌ 2𝐸𝐾𝜃஻ െ 20                                                                                                        (4) 

𝑀஻஽ ൌ 2𝐸𝐾ሺ2𝜃஻ ൅ 𝜃஽ െ 3𝜓ሻ ൅ 𝐹𝐸𝑀஻஽ 

         ൌ 4𝐸𝐾𝜃஻ ൅ 20                                                                                                         (5) 

Joint equilibrium equation. 
 
The equilibrium equation at joint B is as follows: 

෍ 𝑀஻ ൌ  𝑀஻஺ ൅ 𝑀஻஼ ൅ 𝑀஻஽ ൌ  0 

3𝐸𝐾𝜃஻ ൅ 45 ൅ 4𝐸𝐾𝜃஻ െ 10.33 ൅ 4𝐸𝐾𝜃஻ ൅ 20 ൌ  0                         

𝐸𝐾𝜃஻ ൌ  െ4.97     

Final end moments. 
 
Substituting EK𝜃஻ ൌ െ4.97 into equations 1, 2, 3, 4, and 5 suggests the following:  
 

𝑀஺஻ ൌ  0      

𝑀஻஺ ൌ  30.09 kN. m          

𝑀஻஼ ൌ  െ30.21 kN. m      

𝑀஼஻ ൌ  0.39 kN. m       

𝑀஽஻ ൌ  െ29.94 kN. m      



𝑀஻஽ ൌ  0.12 kN. m      

 

 

 Example 11.7 

Using the slope-deflection method, determine the member end moments of the frame shown in 
Figure 11.13a. 

 

 

 

 

 

 

 

8 m 

𝐶
𝐵 

10 kN/m 

𝐴 

6 m 

Fig.  11.13. Frame. 

ሺ𝑎ሻ

 
Solution 
 
Fixed-end moments. 

The Fixed-end moments (FEM) using Table 11.1 are computed as follows: 

𝐹𝐸𝑀஺஻ ൌ  െ ௪୐మ

ଵଶ
ൌ  െ ଵ଴ൈ଼మ

ଵଶ
ൌ  െ53.33 kN. m 

𝐹𝐸𝑀஻஺ ൌ  ௪୐మ

ଵଶ
ൌ  53.33 kN. m 

𝐹𝐸𝑀஻஼ ൌ FEM஻஼ ൌ  0 

Slope-deflection equations. 
 
As 𝜃஺ ൌ  𝜓஻஼ ൌ  0  and 𝜓஺஻ ൌ  ∆

ఴ
, the equations for member end moments can be expressed as 

follows:  
𝑀஺஻ ൌ 2𝐸𝐾ሺ2𝜃஺ ൅ 𝜃஻ െ 3𝜓ሻ ൅ 𝐹𝐸𝑀஺஻ 

        ൌ 2𝐸𝐾ൣ𝜃஻ െ 3൫ష∆
ఴ

൯൧ െ 53.33                                                                         

        ൌ 2𝐸𝐾𝜃஻ ൅ 0.75𝐸𝐾∆ െ 53.33                                                                                        (1) 



M୆୅ ൌ ଶ୉୏ ൬θ୅ ൅ 2θ୆ െ 3 ቀି∆
଼

ቁ൰ ൅ FEM஻஺ 

         ൌ 2𝐸𝐾ൣ2𝜃஻ െ 3൫ష∆
ఴ

൯൧ ൅ 53.33 

         ൌ 4𝐸𝐾𝜃஻ ൅ 0.75𝐸𝐾∆ ൅ 53.33                                                                                       (2) 

𝑀஻஼ ൌ 3𝐸𝐾ሺ𝜃஻ െ 𝜓ሻ ൅ FEM஻஼ െ ూు౉಴ಳ
మ

   

        ൌ 3𝐸𝐾𝜃஻                                                                                                                           (3) 

 

Joint equilibrium equation. 

෍ 𝑀஻ ൌ  𝑀஻஺ ൅ 𝑀஻஼ ൌ  0 

4𝐸𝐾𝜃஻ ൅ 0.75𝐸𝐾∆ ൅ 53.33 ൅ 3EK𝜃஻ ൌ  0   

7𝐸𝐾𝜃஻ ൅ 0.75𝐸𝐾∆ ൌ  െ53. .33                            

 

 

 

 

 

 

 

A௫ 

M஺஻ 

8 m 

𝐵 

10 kN/m 

𝐴 

6 m 

ሺ𝑏ሻ 

                                                 

A௫

M஺஻

M஻஺

8 m 10 kN/m 

ሺ𝑐ሻ

                    (4) 

 

The equilibrium of the horizontal forces in Figure 11.13b suggests the following:  

൅→ ෍ 𝐹௫ ൌ  0 

ሺ10ሻሺ8ሻ െ 𝐴௫ ൌ  0                                                                                                                       (5) 
 
Figure 11.13c suggests the following:   
 
𝐴௫ ൌ  

౉ಲಳశ౉ಳಲశሺభబሻሺఴሻሺరሻ
ఴ

                                                                                                                             (6)           



Substituting 𝐴௫ from equation 6 into equation 5 suggests the following:  

80 െ
ெಲಳାெಳಲାଷଶ଴

଼
 ൌ  0 

640 െ 320 ൌ  𝑀𝐴𝐵 ൅ 𝑀𝐵𝐴                                                                                                                    (7) 

Substituting 𝑀஺஻ and 𝑀஻஺ from equations 1 and 2 into equation 7 suggests the following:  

2𝐸𝐾𝜃஻ ൅ 0.75𝐸𝐾∆ െ 53.33 ൅ 4𝐸𝐾𝜃஻ ൅ 0.75𝐸𝐾∆ ൅ 53.33 ൌ 320 

6𝐸𝐾𝜃஻ ൅ 1.5𝐸𝐾∆ൌ 320                                                                                                              (8) 

Solving equations 4 and 8 simultaneously suggests the following:  

𝐸𝐾𝜃஻ ൌ  െ53.33 and 𝐸𝐾∆ ൌ  426.66 

Final member end moments. 

Putting the obtained values of 𝐸𝐾𝜃஻ and 𝐸𝐾∆ into equations 1, 2, and 3 for member end 
moments suggests the following: 

M஺஻ ൌ  2EK𝜃஻ ൅ 0.75EK∆ െ 53.33 ൌ 160 kN. m     

M஻஺ ൌ  4EK𝜃஻ ൅ 0.75EK∆ ൅ 53.33 ൌ 160 kN. m       

M஻஼ ൌ  3EK𝜃஻ ൌ  െ160 kN. m      

M஼஻ ൌ  0       

 

Example 11.8 
 

Using the slope-deflection method, determine the member end moments of the beam of the 
rectangular cross section shown in Figure 11.14a.  

 

 

 

 

 

 

6 m 

4 m 

𝐷

𝐶𝐵 

𝐴 

4 m 

40 kN 

4 m 

30 kN 

Fig.  11.14. Beam. 



Solution 
 
Fixed-end moments. 

The Fixed-end moments (FEM) using Table 11.1 are computed as follows: 

𝐹𝐸𝑀஺஻ ൌ  െ ௉௅
଼

ൌ  െ ସ଴ൈ଼
଼

ൌ  െ40.0 kN. m 

𝐹𝐸𝑀஻஺ ൌ   ௉௅
଼

ൌ  40.0 kN. m 

𝐹𝐸𝑀஻஼ ൌ  െ ௉௔௕మ

௅మ ൌ  െ ሺଷ଴ሻሺଶሻሺସሻమ

଺మ ൌ  െ26.67 kN. m 

𝐹𝐸𝑀஼஻ ൌ  ௉௔మ௕
௅మ ൌ  ሺଷ଴ሻሺଶሻమሺସሻ

଺మ ൌ  13.33 kN. m 

Slope-deflection equations. 
 
As 𝜃஺ ൌ 𝜃஽ ൌ 0 and 𝜓஺஻ ൌ ∆

ఴ
, equations for member end moments can be expressed as follows:  

 
𝑀஺஻ ൌ 2𝐸𝐾ሺ2𝜃஺ ൅ 𝜃஻ െ 3𝜓ሻ ൅ 𝐹𝐸𝑀஺஻ 

         ൌ 2𝐸𝐾ൣ𝜃஻ െ 3൫ష∆
ఴ

൯൧ െ 40                                                                         

         ൌ 2𝐸𝐾𝜃஻ ൅ 0.75𝐸𝐾∆ െ 40                                                                                               (1) 

𝑀஻஺ ൌ ଶா௄ ൬𝜃஺ ൅ 2𝜃஻ െ 3 ቀି∆
଼

ቁ൰ ൅ 𝐹𝐸𝑀஻஺ 

        ൌ 2𝐸𝐾ൣ2𝜃஻ െ 3൫ష∆
ఴ

൯൧ ൅ 40 

        ൌ 4𝐸𝐾𝜃஻ ൅ 0.75𝐸𝐾∆ ൅ 40                                                                                               (2) 

 

𝑀஻஼ ൌ  2𝐸𝐾ሺ2𝜃஻ ൅ 𝜃஼ െ 3𝜓ሻ ൅ 𝐹𝐸𝑀஻஼   

        ൌ  4𝐸𝐾𝜃஻ ൅ 2𝐸𝐾𝜃஼ െ 26.67                                                                                              (3)                          

M஼஻ ൌ  ଶா௄ሺ𝜃஻ ൅ 2𝜃஼ሻ ൅ 𝐹𝐸𝑀஼஻ 

         ൌ  ଶா௄ఏಳାସா௄ఏ಴ ൅ 13.33                                                                                                      (4) 

𝑀஼஽ ൌ  ଶா௄ሺ2𝜃஼ ൅ 𝜃஽ െ 3𝜓ሻ ൅ 𝐹𝐸𝑀஼஽      
        ൌ ସா௄ఏ಴ ା 0.75𝐸𝐾∆                                                                                                               (5) 

𝑀஽஼ ൌ  ଶா௄ሺ𝜃஼ ൅ 2𝜃஽ െ 3𝜓ሻ ൅ 𝐹𝐸𝑀஽஼      
        ൌ  ଶா௄ఏ಴ ା 0.75𝐸𝐾∆                                                                                                              (6) 



Joint equilibrium equation. 

෍ 𝑀஻ ൌ  𝑀஻஺ ൅ 𝑀஻஼ ൌ  0 

4𝐸𝐾𝜃஻ ൅ 0.75𝐸𝐾∆ ൅ 40 ൅ 4𝐸𝐾𝜃஻ ൅ 2𝐸𝐾𝜃஼ െ 26.67 ൌ  0 

8𝐸𝐾𝜃஻ ൅ 2𝐸𝐾𝜃஼ ൅ 0.75𝐸𝐾∆ ൌ  െ13.33                                                                                    (7) 

෍ 𝑀஼ ൌ  𝑀஼஻ ൅ 𝑀஼஽ ൌ  0 

ଶா௄ఏಳାସா௄ఏ಴ ൅ 13.33 ൅ ସா௄ఏ಴ ା 0.75𝐸𝐾∆  ൌ  0 

ଶா௄ఏಳା଼ா௄ఏ಴ ൅ 0.75𝐸𝐾∆  ൌ  െ13.33                                                                                          (8) 

෍ 𝐹௫ ൌ  0 

40 െ 𝐴௫ െ 𝐷௫ ൌ  0                                                                                                                       (9) 

Substituting 𝐴௫ ൌ ெಲಳାெಳಲାሺସ଴ൈସሻ

଼
 and 𝐷௫ ൌ ெ಴ವାெವ಴

଼
 into equation 9 suggests the following:  

40 െ
𝑀஺஻ ൅ 𝑀஻஺ ൅ ሺ40 ൈ 4ሻ

8
െ

𝑀஼஽ ൅ 𝑀஽஼

8
ൌ  0 

𝑀஺஻ ൅ 𝑀஻஺ ൅ ሺ40 ൈ 4ሻ

8
൅

𝑀஼஽ ൅ 𝑀஽஼

8
ൌ  320 

𝑀஺஻ ൅ 𝑀஻஺ ൅ ሺ40 ൈ 4ሻ ൅ 𝑀஼஽ ൅ 𝑀஽஼ ൌ  320                                                                                        (10) 

 
Substituting the expressions of 𝑀஺஻, 𝑀஻஺, 𝑀஼஽ and 𝑀஽஼ from equations 1, 2, 5, and 6 into e 
suggests the following:  
 
2𝐸𝐾𝜃஻ ൅ 0.75𝐸𝐾∆ െ 40 ൅ 4𝐸𝐾𝜃஻ ൅ 0.75𝐸𝐾∆ ൅ 40 ൅ 160 ൅ ସா௄ఏ಴ ା 0.75𝐸𝐾∆ ൅
ଶா௄ఏ಴ ା 0.75𝐸𝐾∆ ൌ  320 

6𝐸𝐾𝜃஻ ൅ 6𝐸𝐾𝜃஼ ൅ 3𝐸𝐾∆ ൌ  160                                                                                             (11)                         

Solving equations 7, 8, and 11 simultaneously suggests the following:  

𝐸𝐾𝜃஻ ൌ  െ7.62 

𝐸𝐾𝜃஼ ൌ  െ7.62 

𝐸𝐾∆ൌ  83.81 

 



Final member end moments. 
 
Substituting the obtain values of 𝐸𝐾𝜃஻, 𝐸𝐾𝜃஼ and 𝐸𝐾∆ into member end moment equations 
suggests the following:  
 
𝑀஺஻ ൌ  2𝐸𝐾𝜃𝐵 ൅ 0.75𝐸𝐾∆ െ 40 ൌ  7.62      

𝑀஻஺ ൌ  4𝐸𝐾𝜃𝐵 ൅ 0.75𝐸𝐾∆ ൅ 40 ൌ  72.39      

𝑀஻஼ ൌ  4𝐸𝐾𝜃஻ ൅ 2𝐸𝐾𝜃஼ െ 26.67 ൌ  െ72.39     

𝑀஼஻ ൌ  ଶா௄ఏಳାସா௄ఏ಴ ൅ 13.33 ൌ  െ32.39     

𝑀஼஽ ൌ  ସா௄ఏ಴ ା 0.75𝐸𝐾∆ ൌ  32.39      

ெವ಴ୀ ଶா௄ఏ಴ ା 0.75𝐸𝐾∆ ൌ  47.62       

 

 
Table 11.1. Fixed-end moments. 
Type of loading  ሺFEMሻ஺஻ ሺFEMሻ஻஺

 
 
 
 
 
 

 
 

௉௔௕మ

௅మ  

 
 

௉௔మ௕
௅మ  

 
 
 
 
 
 

 
 

𝑏ሺ2𝑎 െ 𝑏ሻெ
௅మ 

 
 

𝑎ሺ2𝑏 െ 𝑎ሻெ
௅మ 

 
 
 
 
 
 

 
 

௪௅మ

ଵଶ
ቀ6 െ 8௔

௅
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ଵଶ
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𝐿
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𝐿 
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௅
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Chapter Summary 

Slope-deflection method of analysis of indeterminate structures: The unknowns in the slope-
deflection method of analysis are the rotations and the relative displacements. Slope-deflection 
equations for member-end moments and the equilibrium equation at each joint that is free to rotate 
are written in terms of the rotations and relative displacements, and they are solved simultaneously 
to determine the unknowns. When the unknown rotations and the relative displacements are 
determined, they are put back in member end moment equations to determine the magnitude of the 
moments. After determination of the end moments, the structure becomes determinate. The 
detailed procedures for analysis by slope-deflection method for beams and frames are presented in 
sections 11.5 and 11.6. In situations where there are several unknowns, analysis using this method 
can be very cumbersome, hence the availability of software that can perform the analysis.   

Slope-deflection equations for mnd Moments: 

                        𝑀஺஻ ൌ  2𝐸𝐾ሺ2𝜃஺ ൅ 𝜃஻ െ 3𝜓ሻ ൅ 𝑀஺஻
ி                                        

                        𝑀஻஺ ൌ  0 ൌ  2𝐸𝐾ሺ𝜃஺ ൅ 2𝜃஻ െ 3𝜓ሻ ൅ 𝑀஻஺
ி                                   

 

Modified slope-deflection equation when far end is supported by a roller or pin: 

                        𝑀஺஻ ൌ  3𝐸𝐾ሺ𝜃஺ െ 𝜓ሻ ൅ ቀ𝑀஺஻
ி െ ಾಳಲ

ಷ

మ
ቁ 

𝐴 𝐵 

𝑤

𝑎 𝐿 െ 𝑎 
𝐿 

𝐴 𝐵 

௅
ଶ
 ௅

ଶ
 

𝑤 



 
 
 Practice Problems 

11.1 Using the slope-deflection method, compute the end moment of members of the beams shown 
in Figure P11.1 through Figure P11.5 and draw the bending moment and shear force diagrams. EI 
= constant.  
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𝐴 
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Fig.  P11.1. Beam. 
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𝐷𝐴
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Fig. P11.2. Beam. 

 
 
 
 
 
 
 
 
 

2.5 kips/ft 

𝐴 
𝐵 𝐶 

9 ft 9 ft 6 ft 

12 kips 

𝐷

Fig.  P11.3. Beam. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
11.2 Using the slope-deflection method, compute the end moments of members of the beams 
shown in Figure P11.6. Assume support E settles by 50 mm. 𝐸 ൌ 200 GPa and 𝐼 ൌ 600 ൈ
10଺mmସ. 

𝐴 6 m 

𝐷 
𝐵 

6 m 

40 kN/m 

6 m 

C 

Fig. P11.4. Beam. 

𝐴 

3 kips/ft 

𝐵
𝐶

12 ft 12 ft 

3.5 kips/ft 

Fig.  P11.5. Beam. 



 
 
 
 
 
 
 
 
 
 
 
11.3 Using the slope-deflection method, determine the end moments of the members of the non-
sway frames shown in Figure P11.7 through Figure P11.10. Draw the bending moment and the 
shear force diagrams. 
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Fig.  P11.6. Beam. 
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Fig.  P11.7. Non-sway frame. 
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Fig. P11.8. Non െ sway frame. 
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Fig.  P11.9. Non െ sway frame. 
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Fig. P11.10. Non െ sway frame. 



11.4 Using the slope-deflection method, determine the end moments of the members of the sway 
frames shown in Figure P11.11 through Figure P11.14. Draw the bending moment and the shear 
force diagrams. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig.  P11.11. Sway frame. 
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Fig. P11.12. Sway frame. 
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Fig.  P11.13. Sway frame. 
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Chapter 12 

Moment Distribution Method of Analysis of Structures 
 
12.1 Basic Concepts 
 
The moment distribution method of analysis of beams and frames was developed by Hardy Cross 
and formally presented in 1930. Although this method is a deformation method like the slope-
deflection method, it is an approximate method and, thus, does not require solving simultaneous 
equations, as was the case with the latter method. The degree of accuracy of the results obtained 
by the method of moment distribution depends on the number of successive approximations or the 
iteration process.  
 
To illustrate the concept of the method of moment distribution, consider the frame shown in Figure 
12.1. Members of the frame are prismatic and are assumed not to deform axially nor translate 
relative to one another. Joints ACD of the frame are fixed, while joint B can rotate slightly due to 
the applied load. First, before carrying out moment distribution among members, all the joints are 
assumed to be temporarily locked using a clamp.     
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𝐷

  

𝑤

𝐵
𝐶𝐴

𝐷

  

𝐵
𝐶𝐴

𝐷

 

𝐴

ሺaሻ Actual 
structure 

𝐵 𝐶

𝐷

 

𝑤

ሺbሻ Structure with all 
joints clamped

ሺcሻ Structure with 
the clamp 

Clamping

Correction

ሺdሻ Structure with 
correction moment at 
B distributed among 
members 

𝑀𝐵𝐴
𝑀𝐵𝐶

𝑀𝐵𝐷

Fig.  12.1. Frame. 



12.2 Sign Convention 
The sign convention for the moment distribution method is similar to the one established for the 
slope-deflection method; that is, the moment at the end of a member is considered positive if it 
tends to turn the end of the member clockwise and negative if it tends to turn it counterclockwise.  
 
12.3 Definitions 
Unbalanced moments: This method of analysis assumes that the joints in a structure are initially 
clamped or locked and then released successively. Once a joint is released, a rotation takes place, 
since the sum of the fixed end moments of the members meeting at that joint is not zero. The value 
of the sum of the end moments obtained is the unbalanced moment at that joint. 
 
Carry-over moments: The distributed moments in the ends of members meeting at a joint cause 
moments in the other ends, which are assumed to be fixed. These induced moments at the other 
ends are called carry-over moments. 
 

 

 

 

 
 
Consider an unloaded prismatic beam fixed at end B, as shown in Figure 12.2. If a moment 𝑀ଵ is 
applied to the left end of the beam, the slope-deflection equations for both ends of the beam can 
be written as follows: 
 
                                              𝑀ଵ ൌ  2𝐸𝐾ሺ2𝜃஺ሻ ൌ 4𝐸𝐾𝜃஺                                                                ሺ12.1ሻ 

                                              𝑀ଶ ൌ  2𝐸𝐾𝜃஺                                                                                         ሺ12.2ሻ 

Substituting 𝜃஺ ൌ ಾభ
రಶ಼

 from equation 12.1 into equation 12.2 suggest the following:  

                                               𝑀ଶ ൌ భ
మ
𝑀ଵ                                                                                               ሺ12.3ሻ 

Equation 12.3 suggests that the moment carried over to the fixed end of a beam due to a moment 
applied at the other end is equal to one-half of the applied moment. 
                                        
Carry-over factor: The ratio of the induced moment to the applied moment is referred to as the 
carry-over factor. For the beam shown in Figure 12.2, the carry-over factor is as follows: 
 
                                               ಾమ

ಾభ
ൌ మಶ಼ഇಲ

రಶ಼ഇಲ
ൌ భ

మ
                                                                                       ሺ12.4ሻ        

 
 

𝐴 𝐵 

𝐿

𝑀ଵ 

𝑀ଶ 

𝜃𝐴 

Fig.  12.2. Unloaded prismatic beam. 



Distributed factor (DF): The distributed factor is a factor used to determine the proportion of the 
unbalanced moment carried by each of the members meeting at a joint. For the members meeting 
at joint O of the frame shown in Figure 12.3, their distribution factors are computed as follows: 
 

 

 

 

 

 

 

 

 

 
 
 
                               
                                                                                                                                                  (12.5) 
 
 
 
 
 
 
 
Distributed moments: Upon the release of the imaginary clamp at a joint, the unbalanced moment 
at that joint causes it to rotate. The rotation twists the end of the members meeting at the joint, 
resulting in the development of resisting moments. These resisting moments are called distributed 
moments. The distributed moments for the members of the frame shown in Figure 12.3 are 
computed as follows:  
             

 

      
                                                                                                                                                  (12.6) 
 

 

 𝑀ை஺ ൌ ಼ೀಲ
∑ ಼

𝑀ை ൌ ሺ𝐷𝐹ሻை஺𝑀ை 

 𝑀ை஻ ൌ ಼ೀಳ
∑ ಼

𝑀ை ൌ ሺ𝐷𝐹ሻை஻𝑀ை 

 𝑀ை஼ ൌ ಼ೀ಴
∑ ಼

𝑀ை ൌ ሺ𝐷𝐹ሻை஼𝑀ை 

 𝑀ை஽ ൌ ಼ೀವ
∑ ಼

𝑀ை ൌ ሺ𝐷𝐹ሻை஽𝑀ை 

  ሺ𝐷𝐹ሻை஺ ൌ ಼ೀಲ
∑ ಼

 ሺ𝐷𝐹ሻை஻ ൌ ಼ೀಳ
∑ ಼

 

 ሺ𝐷𝐹ሻை஼ ൌ ಼ೀ಴
∑ ಼

 

 ሺ𝐷𝐹ሻை஽ ൌ ಼ೀವ
∑ ಼

𝐴 
𝜃𝑂 

𝐵

𝐶

𝐷

𝑂

𝑀ை 

𝜃𝑂

Fig.  12.3. Frame. 



12.4 Modification of Member Stiffness 
Sometimes the iteration process in the moment distribution method can be significantly reduced 
by adjusting the flexural stiffness of some members of the indeterminate structure. This section 
considers the influence of a fixed- and a pin-end support on the flexural stiffness of an 
indeterminate beam. 
 
Case 1: A beam hinged at one end and fixed at the other 
 
 
 
 
 
 
 
 
Consider a beam hinged at end A and fixed at end B, as shown in Figure 12.4. Applying a moment 
M rotates the hinge end by an amount 𝜃. Writing the slope-deflection equation for the end A of the 
member and noting that 𝜃஻ ൌ  𝜓஺஻ ൌ 𝑀஺஻

ி ൌ  0 suggests the following:  
 
                          𝑀஺஻ ൌ మಶ಺

ಽ
ሺ2𝜃஺ ൅ 𝜃஻ െ 3𝜓஺஻ሻ ൅ 𝑀஺஻

ி  

 
                                   ൌ  మಶ಺

ಽ
ሺ2𝜃஺ ൅ 0 െ 0ሻ ൅ 0 

 

                          𝑀஺஻ ൌ  ൫రಶ಺
ಽ

൯𝜃஺                                                                                                            (12.7) 
 
By definition, the bending stiffness of a structural member is the moment that must be applied to 
an end of the member to cause a unit rotation of that end. The following expression for the bending 
stiffness for the member with a fixed far end is expressed as follows when substituting 𝜃஺ ൌ  1 
into equation 12.7:                                                                                                                     
 
                                                                                                                                                                 (12.8) 
                     
 
By definition, the relative bending stiffness of a member is determined by dividing the bending 
stiffness of the member by 4E. Dividing the equation 12.8 by 4E suggests the following expression 
for relative stiffness for the case being considered: 

                                                                                                     

                                                                                                                                                  (12.9)                         

                                                                                                                     

Case 2: A beam hinged at both ends 

𝐾 ൌ ସாூ
௅
 

𝐴 𝐵

𝐿 

𝑀 
𝜃𝐴

Fig.  12.4. Beam

𝐾ோ ൌ రಶ಺
రಶಽ

ൌ ಺
ಽ
  



 

 

 

 

 
Applying a moment M at the end A of the simply supported beam shown in Figure 12.5 rotates the 
beam by an angle 𝜃஺ at the hinged end. Using the modified slope-deflection equation derived in 
section 11.4 of Chapter 11 and noting that 𝜓 ൌ 𝑀஺஻

ி ൌ 𝑀஻஺
ி ൌ  0 suggests the following expression 

for the moment at the hinged end where the load is applied:    
 

𝑀஺஻ ൌ ଷாூ
௅

ሺ𝜃஺ െ 𝜓ሻ ൅ ቀ𝑀஺஻
ி െ ெಳಲ

ಷ

ଶ
ቁ 

         ൌ యಶ಺
ಽ

ሺ𝜃஺ െ 0ሻ ൅ ሺ0 െ 0ሻ 

  𝑀஺஻ ൌ ൫యಶ಺
ಽ

൯𝜃஺                                                                                                                              (12.10)                 

Substituting 𝜃஺ ൌ  1 into equation 12.10 suggests the following expression for the bending 
stiffness for a member with a hinged far end:  
                

                                                                                                                                                              (12.11) 

 
The relative stiffness for a member with a hinged far end is obtained by dividing equation 12.11 
by 4E, as follows:  
                                                     

                                                                                                                                                              (12.12)                          

 
Comparing equations 12.12 and 12.9 suggests that a member with a hinged far end is three-fourth 
as stiff as a member with the same geometry but fixed at the far end. This established fact can 
substantially reduce the number of iteration when analyzing beams or frames with a hinged far end 
using the method of moment distribution. In such cases, the relative stiffness of the beam at the 
near end is first adjusted according to equation 12.12, and its distribution factor is computed with 
the adjusted stiffness. During the balancing operation, the near end will be balanced just once with 
no further carrying over of moments from or to its end.  
 
 

𝐾 ൌ ଷாூ
௅
 

𝐾ோ ൌ యಶ಺
రಶಽ

ൌ య
ర
൫಺

ಽ
൯     

𝐴 
𝐵

𝐿 

𝑀 𝜃𝐴 𝜃𝐵 

Fig.  12.5. Simply supported beam. 

12.5 Analysis of Indeterminate Beams 
 



The procedure for the analysis of indeterminate beams by the method of moment distribution is 
briefly summarized as follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Example 12.1 

Using the moment distribution method, determine the end moments and the reactions at the 
supports of the beam shown in Figure 12.6a. Draw the shearing force and the bending moment 
diagrams. EI = constant. 

 

 

 

 

 
 
 

𝐴 
𝐵

3 m 

16 kN/m 

6 m 

C 

ሺaሻFig.  12.6. Beam. 

 

• Calculate the fixed-end moments for members, assuming that the 
joints are clamped against rotation. 

• Calculate the distribution factor for each of the members connected at 
the joint 

• Calculate the unbalanced moment at each joint and distribute the 
same to the ends of members connected at that joint. 

• Carry over one-half of the distributed moment to the other ends of 
members.  

• Add or subtract these latter moments (moments obtained in steps 
three and four) to or from the original fixed-end moments. 

• Apply the determined end moments at the joints of the given 
structure. 

• Draw the free-body diagram of each span of the given beam, showing 
the loads and moments at the joints obtained by the moment 
distribution method. 

• Determine the support reactions for each span. 
• Compute and construct the shearing force and bending moment 

diagrams for each span. 
• Draw one bending moment and one shearing force diagram for the 

given beam by combining the diagrams in step 9.  

Procedure for Analysis of Indeterminate Beams by the Moment 
Distribution Method 



Solution 
 
Fixed end moment. 

ሺ𝐹𝐸𝑀ሻ஺஻ ൌ െ ௪୐మ

ଵଶ
ൌ െ ଵ଺ൈଷమ

ଵଶ
ൌ  െ12 kN. m 

ሺ𝐹𝐸𝑀ሻ஻஺ ൌ ௪୐మ

ଵଶ
ൌ  12 kN. m 

ሺ𝐹𝐸𝑀ሻ஻஼ ൌ െ ଵ଺ൈ଺మ

ଵଶ
ൌ  െ48 kN. m 

ሺ𝐹𝐸𝑀ሻ஼஻ ൌ  48 kN. m 

Stiffness factor. 

𝐾஺஻ ൌ 𝐾஻஺ ൌ ୍
ଷ

ൌ  0.333I 

𝐾஻஼ ൌ 𝐾஼஻ ൌ ୍
଺

ൌ  0.167I 

Distribution factor. 

ሺ𝐷𝐹ሻ஺஻ ൌ ௄ಲಳ
∑ ௄

ൌ ௄ಲಳ

௄ಲಳାஶ
ൌ ଴.ଷଷଷ୍

଴.ଷଷଷ୍ାஶ
ൌ  0 

ሺ𝐷𝐹ሻ஻஺ ൌ
𝐾஻஺

∑ 𝐾
 ൌ

𝐾஻஺

𝐾஻஺ ൅ 𝐾஻஼
ൌ ଴.ଷଷଷ୍

଴.ଷଷଷ୍ା଴.ଵ଺଻୍
ൌ  0.67 

ሺ𝐷𝐹ሻ஻஼ ൌ
𝐾஻஼

∑ 𝐾
ൌ

𝐾஻஼

𝐾஻஺ ൅ 𝐾஻஼
ൌ ଴.ଵ଺଻୍

଴.ଷଷଷ୍ା଴.ଵ଺଻୍
ൌ  0.33 

ሺ𝐷𝐹ሻ஼஻ ൌ ௄಴ಳ
∑ ௄

ൌ ௄಴ಳ

௄ಲಳାஶ
ൌ ଴.ଵ଺଻୍

଴.ଵ଺଻୍ାஶ
ൌ  0 

 

Table 12.1. Distribution table. 

 

 

 

 

 

 

 

 

Joint A B C 

Member AB BA BC CB 

DF 0 0.33 0.67 0 

FEM 

Bal 

-12 

 

+12 

+24.12 

-48 

+11.88 

+48 

 

CO +12.06   +5.94 

Total +0.06 +36.12 -36.12 +53.94 

 

 



Shear force and bending moment diagrams. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.06 kN.m

36.12 kN.m 

53.94 kN.m

ሺfሻ Bending moment diagram for the
indeterminate beam 

11.94 kN 

36.06 kN 

45.03 kN 

50.97 kN

൅ 

െെ 

ሺeሻ Shearing force diagram for the
 indeterminate beam 
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ሺ𝑏ሻ

𝐴 𝐵 

16 kN/m 
0.06 kN.m 36.12 kN.m

11.94 kN 36.06 kN 

ሺ𝑐ሻ 

𝐵 

16 kN/m

C 

36.12 kN.m 53.94 kN.m 

50.97 kN 45.03 kN
ሺ𝑑ሻ

 

 

 Example 12.2 

Using the moment distribution method, determine the end moments and the reactions at the 
supports of the beam shown in Figure 12.7a. Draw the shearing force and the bending moment 
diagrams.  

 

 
 

𝐴 

20 kN/m 

𝐵 
𝐶

1.5 m 3 m 
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1.5 m 

1.5 I I 

Fig.  12.7. Beam. ሺ𝑎ሻ



Solution 
 
Fixed end moment. 

ሺ𝐹𝐸𝑀ሻ஺஻ ൌ െ ௪௅మ

ଵଶ
ൌ െ ଶ଴ൈଷమ

ଵଶ
ൌ  െ15 kN. m 

ሺ𝐹𝐸𝑀ሻ஻஺ ൌ ௪௅మ

ଵଶ
ൌ  ൅15 kN. m 

ሺ𝐹𝐸𝑀ሻ஻஼ ൌ െ ௉௅
଼

ൌ െ ଶ଴ൈଷ
଼

ൌ  െ7.5 kN. m 

ሺ𝐹𝐸𝑀ሻ஼஻ ൌ  ൅7.5 kN. m 

Stiffness factor. 

𝐾஺஻ ൌ 𝐾஻஺ ൌ ூಲಳ

௅ಲಳ
ൌ ଷ

ସ
ൈ ଵ.ହ୍

ଷ
ൌ  0.375I 

𝐾஻஼ ൌ 𝐾஼஻ ൌ
𝐼஻஼

𝐿஻஼
ୀ

య
ర

ൈ
౅
య

ൌ  0.25I 

Distribution factor. 

ሺ𝐷𝐹ሻ஺஻ ൌ ௄ಲಳ
∑ ௄

ൌ ௄ಲಳ

௄ಲಳା଴
ൌ ଴.ଷ଻ହ୍

଴.ଷ଻ହ୍ା଴
ൌ  1 

ሺ𝐷𝐹ሻ஻஺ ൌ
𝐾஻஺

∑ 𝐾
 ൌ

𝐾஻஺

𝐾஻஺ ൅ 𝐾஻஼
ൌ ଴.ଷ଻ହ୍

଴.ଷ଻ହ୍ା଴.ଶହ୍
ൌ  0.6 

ሺ𝐷𝐹ሻ஻஼ ൌ
𝐾஻஼

∑ 𝐾
ൌ

𝐾஻஼

𝐾஻஺ ൅ 𝐾஻஼
ൌ ଴.ଶହ୍

଴.ଷ଻ହ୍ା଴.ଶହ୍
ൌ  0.4 

ሺ𝐷𝐹ሻ஼஻ ൌ ௄಴ಳ
∑ ௄

ൌ ௄಴ಳ

௄಴ಳା଴
ൌ ଴.ଶହ୍

଴.ଶହ୍ା଴
ൌ  1 

 

Table 12.2. Distribution table. 

 

 

 

 

 

 

 

 

Joint A B C 

Member AB BA BC CB 

DF 1 0.6 0.4 1 

FEM 

Bal. 1 

-15 

+15 

+15 

-4.5 

-7.5 

-3 

+7.5 

-7.5 

CO 

Bal. 2 

 +7.5 

-2.25 

-3.75 

-1.5 

 

Total 0.0 +15.75 -15.75 0 

 



Shear force and bending moment diagrams. 
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ሺ𝑐ሻ Shearing force diagram of the indeterminate 
beam 
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beam
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The procedure for the analysis of frames using the moment distribution method depends on the 
type of frame that is being analyzed. Frames are categorized as sway- or non-sway frames. The 
procedure for the analysis of non-sway frames are similar to that of indeterminate beams. But for 
the analysis of sway frames, the procedure is different. There are two stages involved in the 
analysis of sway frames, namely the non-sway stage and sway-stage analyses. These stages are 
described below. 

 
 
 
 
 
 
 
 
 
 
 
 

12.6 Analysis of Indeterminate Frames 



 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Example 12.3 

Using the moment distribution method, determine the members’ end moments of the frame 
shown in Figure 12.8. EI = constant.  

 

 

 

 

 

 

 
 
 
 
 

𝐵 

12 kips 

𝐶
𝐴 

𝐷 

14 ft 

16 ft 4 kips/ft 

24 ft 

28 ft  

Fig. 12.8. Frame. 

 A. Non-sway stage analysis 
• First assume the existence of an imaginary prop that prevents the 

frame from swaying. 
• Compute the horizontal reactions at the supports of the frame and 

note the difference X. This is the force to prevent sway. 
B. Sway stage analysis 

• Assume arbitrary moments to act on the columns of the frame. The 
magnitude of these moments will vary from column to column in 
proportion to ಺

ಽమ. 
• Values are assumed for 𝑀ଶ, and 𝑀ଵ is determined. 
• The arbitrary moments are then distributed as for the non-sway 

condition 
• Calculate the magnitude of the horizontal reactions at the supports for 

the sway condition. The summation of these reactions gives the 
arbitrary displacing force Y. 

• Determine the ratio ೉
ೊ
. This ratio is called the sway factor. 

• Use the sway factor to multiply the distributed moments of the sway. 
This gives the corrected moment for the sway. 

• The final moments for the frame are the summation of the moments 
obtained in the non-sway stage and the corrected moment for the 
sway stage. 

  

Procedure for Analysis of Indeterminate Sway-Frames by the  
Moment Distribution Method 



 
 
Solution 
 
Fixed end moment. 

ሺ𝐹𝐸𝑀ሻ஺஻ ൌ െ ௉௔௕మ

௅మ ൌ െ ଵଶൈଵ଺ൈ଼మ

ଶସమ ൌ  െ21.33 k. ft 

ሺ𝐹𝐸𝑀ሻ஻஺ ൌ ൅௉௔మ௕
௅మ  ൌ

12 ൈ 16ଶ ൈ 8
24ଶ ൌ  ൅42.67 k. ft 

ሺ𝐹𝐸𝑀ሻ஻஼ ൌ െ ௪௅మ

ଵଶ
ൌ െ ସൈଵସమ

ଵଶ
ൌ  െ65.33 k. ft 

ሺ𝐹𝐸𝑀ሻ஼஻ ൌ ௪௅మ

ଵଶ
ൌ  ൅65.33 k. ft 

Stiffness factor. 

𝐾஺஻ ൌ 𝐾஻஺ ൌ ூಲಳ

௅ಲಳ
ൌ ୍

ଶସ
ൌ  0.0417I 

𝐾஻஼ ൌ 𝐾஼஻ ൌ  ଷ
ସ

ൈ
𝐼஻஼

𝐿஻஼
ୀ 

య
ర

ൈ
౅

భర
ൌ  0.0536I 

𝐾஻஽ ൌ 𝐾஽஻ ൌ ூಳವ

௅ಳವ
ൌ ூ

ଶ଼
ൌ  0.0357I 

Distribution factor. 

ሺ𝐷𝐹ሻ஺஻ ൌ ௄ಲಳ
∑ ௄

ൌ ௄ಲಳ

௄ಲಳା଴
ൌ ଴.଴ସଵ଻୍

଴.଴ସଵ଻୍ାஶ
ൌ  0 

ሺ𝐷𝐹ሻ஻஺ ൌ
𝐾஻஺

∑ 𝐾
 ൌ

𝐾஻஺

𝐾஻஺ ൅ 𝐾஻஼ ൅ 𝐾஻஽
ൌ ଴.଴ସଵ଻୍

଴.଴ସଵ଻୍ା଴.଴ହଷ଺୍ା଴.଴ଷହ଻୍
ൌ  0.32 

ሺ𝐷𝐹ሻ஻஼ ൌ
𝐾஻஼

∑ 𝐾
ൌ

𝐾஻஼

𝐾஻஺ ൅ 𝐾஻஼ ൅ 𝐾஻஽
ൌ ଴.଴ହଷ଺୍

଴.଴ସଵ଻୍ା଴.଴ହଷ଺୍ା଴.଴ଷହ଻୍
ൌ  0.41 

ሺ𝐷𝐹ሻ஼஻ ൌ ௄಴ಳ
∑ ௄

ൌ ௄಴ಳ

௄಴ಳା଴
ൌ ଴.଴ହଷ଺୍

଴.଴ହଷ଺୍ା଴
ൌ  1 

ሺ𝐷𝐹ሻ஻஽ ൌ ௄ಳವ
∑ ௄

ൌ
𝐾஻஽

𝐾஻஺ ൅ 𝐾஻஼ ൅ 𝐾஻஽
ൌ ଴.଴ଷହ଻୍

଴.଴ସଵ଻୍ା଴.଴ହଷ଺୍ା଴.଴ଷହ଻୍
ൌ  0.27 

ሺ𝐷𝐹ሻ஽஻ ൌ ௄ವಳ
∑ ௄

ൌ ଴.଴ଷହ଻୍
଴.଴ଷହ଻୍ାஶ

ൌ 0 

 

 

 



Table 12.3. Distribution table. 

 

 

 

 

 

 

 

 

 

 

 

 

Final member end moments. 
 
Substituting the obtained values of 𝐸𝐾𝜃஻, 𝐸𝐾𝜃஼, and 𝐸𝐾∆ into the member end moment 
equations suggests the following:  
 
𝑀஺஻ ൌ  െ12.48 k. ft      

𝑀஻஺ ൌ  ൅60.37 k. ft      

𝑀஻஼ ൌ  െ75.31 k. ft     

𝑀஻஽ ൌ  ൅14.94 k. ft     

𝑀஼஻ ൌ  0    

𝑀஽஻ ൌ  ൅7.47 k. ft       

 

 

Using the moment distribution method, determine the end moments at the supports of the frame 
shown in Figure 12.9. EI = constant.  

Joint A B C D 

Member AB BA BC BD CB DB 

DF 0 0.32 0.41 0.27 1 0 

FEM 

Dist. 1 

-21.33 +42.67 

൅7.25 

-65.33 

൅9.29 

0 

൅6.12 

+65.33 

െ65.33 

 

 

 

CO 

Dist. 2 

൅3.625  

൅10.453 

െ32.665

൅13.393

 

൅8.82 

൅4.645 

െ4.645 

൅3.06 

 

 ൅5.23     ൅4.41 

Total െ12.48 ൅60.37 െ75.31 ൅14.94 0.0 ൅7.47 

 

 

 Example 12.4 



 

 

 

 

 

 

  

 
Fixed end moment. 

ሺ𝐹𝐸𝑀ሻ஺஻ ൌ ሺ𝐹𝐸𝑀ሻ஻஺ ൌ ሺ𝐹𝐸𝑀ሻ஻஼ ൌ ሺ𝐹𝐸𝑀ሻ஼஻ ൌ  0 

ሺ𝐹𝐸𝑀ሻ஻஽ ൌ െ ௪௅మ

ଵଶ
ൌ െ ଶൈଵ଴మ

ଵଶ
ൌ  െ16.67 k. ft 

ሺ𝐹𝐸𝑀ሻ஽஻ ൌ ௪୐మ

ଵଶ
ൌ  ൅16.67 k. ft 

 
Stiffness factor. 

𝐾஺஻ ൌ 𝐾஻஺ ൌ ூಲಳ

௅ಲಳ
ൌ ୍

ସ.ହ
ൌ  0.222I 

𝐾஻஼ ൌ 𝐾஼஻ ൌ  
𝐼஻஼

𝐿஻஼
ୀ 

౅
ర.ఱ

ൌ  0.222I 

𝐾஻஽ ൌ 𝐾஽஻ ൌ ଷ
ସ

ൈ ூಳವ

௅ಳವ
ൌ

3
4

ൈ ଶ୍
ଵ଴

ൌ  0.15I 

 
Distribution factor. 
 
ሺ𝐷𝐹ሻ஺஻ ൌ  0 

ሺ𝐷𝐹ሻ஻஺ ൌ
𝐾஻஺

∑ 𝐾
 ൌ

𝐾஻஺

𝐾஻஺ ൅ 𝐾஻஼ ൅ 𝐾஻஽
ൌ ଴.ଶଶଶ୍

଴.ଶଶଶ୍ା଴.ଶଶଶ୍ା଴.ଵହ୍
ൌ  0.37 

ሺ𝐷𝐹ሻ஻஼ ൌ
𝐾஻஼

∑ 𝐾
ൌ

𝐾஻஺

𝐾஻஺ ൅ 𝐾஻஼ ൅ 𝐾஻஽
ൌ ଴.ଶଶଶ୍

଴.ଶଶଶ୍ା଴.ଶଶଶ୍ା଴.ଵହ୍
ൌ  0.37 

ሺ𝐷𝐹ሻ஼஻ ൌ  0 

ሺ𝐷𝐹ሻ஻஽ ൌ ௄ಳವ
∑ ௄

ൌ
𝐾஻஽

𝐾஻஺ ൅ 𝐾஻஼ ൅ 𝐾஻஽
ൌ ଴.ଵହ୍

଴.ଶଶଶ୍ା଴.ଶଶଶ୍ା଴.ଵହ୍
ൌ  0.25 

2 kips/ft 
16 kips 

𝐵 

𝐶 

𝐴 

10 ft 5 ft 

𝐷
𝐸 

4.5 ft 

4.5 ft 

I 

I 

2I 

Fig. 12.9. Frame.

Solution 



 

ሺ𝐷𝐹ሻ஽஻ ൌ ௄ವಳ
∑ ௄

ൌ ௄ವಳ

௄ವಳା଴
ൌ ଴.ଵହ୍

଴.ଵହ୍ା଴
ൌ  1 

 

Table 12.4. Distribution table.  

 

 

 

 

 

 

 

 

 

 

 

 

Final member end moments. 

𝑀஺஻ ൌ  െ2.77 k. ft      

𝑀஻஺ ൌ  െ5.55 k. ft      

𝑀஻஼ ൌ  െ5.55 k. ft     

𝑀஻஽ ൌ  ൅11.25 k. ft    

𝑀஼஻ ൌ  െ2.77     

𝑀஽஻ ൌ  ൅80 k. ft      

𝑀஽ா ൌ  െ80 k. ft       

 

 

 

Joint A B C D E 

Member AB BA BC BD CB DB DE 

DF 0 0.37 0.37 0.25 0 1  

CM 

FEM 

Dist. 1 

  

 

൅6.17 

 

 

൅6.17 

 

-16.67 

൅4.17 

  

൅16.67

൅63.33

െ80 

CO 

Dist. 2 

൅3.09  

െ11.72 

 

െ11.72 

൅31.67

െ7.92 

൅3.09   

CO െ5.86    െ5.86   

Total െ2.77 െ5.55 െ5.55 ൅11.25 െ2.77 ൅80 െ80 

 



 Example 12.5 

Using the moment distribution method, determine the end moments at the supports of the frame 
shown in Figure 12.10. EI = constant.  

 

 

 

 

 

 
 
 
 
 

 
Fixed end moment. 

ሺ𝐹𝐸𝑀ሻ஺஻ ൌ ሺ𝐹𝐸𝑀ሻ஻஺ ൌ ሺ𝐹𝐸𝑀ሻ஻஼ ൌ ሺ𝐹𝐸𝑀ሻ஼஻ ൌ  0 

ሺ𝐹𝐸𝑀ሻ஻஽ ൌ െ ௪௅మ

ଵଶ
ൌ െ ଺ହൈଷమ

ଵଶ
ൌ  െ48.75 kN. m 

ሺ𝐹𝐸𝑀ሻ஽஻ ൌ ௪௅మ

ଵଶ
ൌ  ൅48.75 kN. m 

 
Stiffness factor. 
 

𝐾஺஻ ൌ 𝐾஻஺ ൌ ூಲಳ

௅ಲಳ
ൌ ୍

ଷ
ൌ  0.333I 

𝐾஻஼ ൌ 𝐾஼஻ ൌ  
𝐼஻஼

𝐿஻஼
ୀ 

౅
య

ൌ  0.333I 

𝐾஻஽ ൌ 𝐾஽஻ ൌ ଷ
ସ

ൈ ூಳವ

௅ಳವ
ൌ ଷ

ସ
ൈ ୍

ଷ
ൌ  0.25I 

 
Distribution factor. 
ሺ𝐷𝐹ሻ஺஻ ൌ  0 

ሺ𝐷𝐹ሻ஻஺ ൌ
𝐾஻஺

∑ 𝐾
 ൌ

𝐾஻஺

𝐾஻஺ ൅ 𝐾஻஼ ൅ 𝐾஻஽
ൌ ଴.ଷଷଷ୍

଴.ଷଷଷ୍ା଴.ଷଷଷ୍ା଴.ଶହ୍
ൌ  0.36 

𝐷 

65kN/m 

𝐵 

𝐶 

𝐴 

3 m 

3 m 

3 m 

Fig. 12.10. Frame. 

Solution 



ሺ𝐷𝐹ሻ஻஼ ൌ
𝐾஻஼

∑ 𝐾
ൌ

𝐾஻஺

𝐾஻஺ ൅ 𝐾஻஼ ൅ 𝐾஻஽
ൌ ଴.ଷଷଷ୍

଴.ଷଷଷ୍ା଴.ଷଷଷ୍ା଴.ଶହ୍
ൌ  0.36 

ሺ𝐷𝐹ሻ஼஻ ൌ 0 

ሺ𝐷𝐹ሻ஻஽ ൌ ௄ಳವ
∑ ௄

ൌ
𝐾஻஽

𝐾஻஺ ൅ 𝐾஻஼ ൅ 𝐾஻஽
ൌ ଴.ଶହ୍

଴.ଷଷଷ୍ା଴.ଷଷଷ୍ା଴.ଶହ୍
ൌ  0.27 

ሺ𝐷𝐹ሻ஽஻ ൌ ௄ವಳ
∑ ௄

ൌ ௄ವಳ

௄ವಳା଴
ൌ ଴.ଶହ୍

଴.ଶହ୍ା଴
ൌ  1 

 

Table 12.5. Distribution table.  

 

 

 

 

 

 

 

 

 

 

 

 

Final member end moments. 

𝑀஺஻ ൌ  െ13.17 k. ft      

𝑀஻஺ ൌ  െ26.33 k. ft      

𝑀஻஼ ൌ  െ26.33 k. ft     

𝑀஻஽ ൌ   ൅53.39 k. ft       

𝑀஼஻ ൌ  െ13.17 k. ft       

𝑀஽஻ ൌ  0      

 

Joint A B C D 

Member AB BA BC BD CB DB 

DF 0 0.36 0.36 0.27 0 1 

FEM 

Dist. 1 

  

െ17.55 

 

െ17.55 

 

൅48.75

െ13.16

 െ48.75 

൅48.75  

CO 

Dist. 2 

െ8.78 

 

 

െ8.78 

 

െ8.78 

൅24.38

െ6.58 

െ8.78  

 

CO െ4.39    െ4.39  

Total െ13.17 െ26.33 െ26.33 ൅53.39 െ13.17 0 



 Example 12.6 

Using the moment distribution method, determine the member end-moments of the frame with 
side-sway shown in Figure 12.11a. 

  

 

 

 

 

 

 
 
 
 

3 ft 

6 ft 

𝐶
𝐵

4k/ft 

𝐴

20 kips 

3 ft 

I

2I

Fig.  12.11. Frame with side െ sway. ሺ𝑎ሻ

 
Solution 
 
Fixed end moment. 

ሺ𝐹𝐸𝑀ሻ஺஻ ൌ െ ௪௅మ

ଵଶ
ൌ െ ସൈ଺మ

ଵଶ
ൌ  െ12 k. ft 

ሺ𝐹𝐸𝑀ሻ஻஺ ൌ ௪௅మ

ଵଶ
ൌ  ൅12 k. ft 

ሺ𝐹𝐸𝑀ሻ஻஼ ൌ െ ௉௅
଼

ൌ െ ଶ଴ൈ଺
଼

ൌ  െ15 k. ft 

ሺ𝐹𝐸𝑀ሻ஼஻ ൌ  ൅15 k. ft 

 

Stiffness factor. 

𝐾஺஻ ൌ 𝐾஻஺ ൌ ூಲಳ

௅ಲಳ
ൌ ଶ୍

଺
ൌ  0.333I 

𝐾஻஼ ൌ 𝐾஼஻ ൌ
𝐼஻஼

𝐿஻஼
ୀ

య
ర

ൈ
౅
ల

ൌ  0.125I 

 
Distribution factor. 

ሺ𝐷𝐹ሻ஺஻ ൌ ௄ಲಳ
∑ ௄

ൌ ௄ಲಳ

௄ಲಳାஶ
ൌ ଴.ଷଷଷ୍

଴.ଷଷଷ୍ାஶ
ൌ  0 



ሺ𝐷𝐹ሻ஻஺ ൌ
𝐾஻஺

∑ 𝐾
 ൌ

𝐾஻஺

𝐾஻஺ ൅ 𝐾஻஼
ൌ ଴.ଷଷଷ୍

଴.ଷଷଷ୍ା଴.ଵଶହ୍
ൌ  0.73 

ሺ𝐷𝐹ሻ஻஼ ൌ
𝐾஻஼

∑ 𝐾
ൌ

𝐾஻஼

𝐾஻஺ ൅ 𝐾஻஼
ൌ ଴.ଵଶହ୍

଴.ଷଷଷ୍ା଴.ଵଶହ୍
ൌ  0.27 

ሺ𝐷𝐹ሻ஼஻ ൌ ௄಴ಳ
∑ ௄

ൌ ௄಴ಳ

௄಴ಳା଴
ൌ ଴.ଵଶହ୍

଴.ଵଶହ୍ା଴
ൌ  1 

 
Analysis of frame without side-sway. 
 

 

 

 

 

 

 

 

3 ft 
𝐶 

𝐵 

4k/ft 

𝐴 

20 kips 

3 ft 

I 

2I 

X 

ሺ𝑏ሻ
 

Table 12.6. Distribution table (no sway frame). 

 

 

 

 

 

 

 

 

 
 
 
 

 

Joint A B C 

Member AB BA BC CB 

DF 0 0.73 0.27 1 

FEM 

Bal. 1 

െ12 

 

൅12 

൅ 2.19 

െ15 

൅ 0.81 

൅15 

െ15 

CO 

Bal. 2 

൅1.095  

൅5.475 

െ7.5 

൅2.025 

 

CO ൅2.738    

Total െ8.17 ൅19.67 െ19.67 0 

 



෍ 𝑀஻ ൌ  0 

8.17 ൅ ሺ4ሻሺ6ሻሺ3ሻ െ 19.67 െ 6𝐴௫ ൌ  0 

𝐴௫ ൌ  ሾ଼.ଵ଻ାሺସሻሺ଺ሻሺଷሻିଵଽ.଺଻ሿ

଺
 ୀ 10.08 kips 

 

෍ 𝐹௫ ൌ  0 

ሺ4ሻሺ6ሻ െ 10.08 െ 𝑋 ൌ  0 

𝑋 ൌ  13.92 kips 
 
Analysis of frame with side-sway. 
 
Assume that 𝑀஺஻ ൌ  ൅20 k. ft 

 

Table 12.7. Distribution table (sway frame). 

 

 

 

 

 

 

 

 

 

෍ 𝑀஻ ൌ  0 

െ12.7 െ 5.4 ൅ 6𝐴௫ ൌ  0 

𝐴௫ ൌ ሺଵଶ.଻ାହ.ସሻ
଺

  ൌ  3.02 kips 

 

 

 

Joint A B C 

Member AB BA BC CB 

DF 0 0.73 0.27 1 

FEM 

Bal. 1 

൅20 

 

൅20 

െ 14.6 

 

െ 5.4 

 

CO െ 7.3    

Total ൅12.7 ൅5.4 െ 5.4 0 

A௫ ൌ 10.08 kips 

4 kips/ft 

𝐴

𝐶 𝐵 
X 

ሺ𝑑ሻ



 

 

 

 

 

 

 

 

 

 

෍ 𝐹௫ ൌ  0 

3.02 െ 𝑌 ൌ  0 

𝑌 ൌ  3.02 kips 

Corrective factor 𝜂 ൌ  ౔
ౕ

 ൌ  భయ.వమ
య.బమ

 ൌ  4.61 

Final end moments. 

𝑀஺஻ ൌ  െ8.17 ൅ ሺ12.7ሻሺ4.61ሻ  ൌ  50.38 k. ft       

𝑀஻஺ ൌ  19.67 ൅ ሺ5.4ሻሺ4.61ሻ  ൌ  44.56 k. ft      

𝑀஻஼ ൌ  െ19.67 ൅ ሺെ5.4ሻሺ4.61ሻ  ൌ  െ44.56 k. ft      

𝑀஼஻ ൌ  0       

 

 

 

A sway frame is loaded as shown in Figure 12.12a. Using the moment distribution method, 
determine the end moments of the members of the frame.  

 

 

 

ሺ𝑒ሻ 

A௫ ൌ 3.02 kips 
𝐴 

𝐶 𝐵 
Y 

A௫ 

M஺஻ ൌ 12.7 k. ft 

M஻஺ ൌ 5.4 k. ft 

6 ft 

ሺ𝑓ሻ

 Example 12.7 



 

 

 
 
 
 
 
 

𝐷

𝐶𝐵 

10 kN/m 

A 

4 m 

3 m 

2I 1.5I

I 

Fig. 12.12. Loaded sway frame. 

ሺ𝑎ሻ

Solution 
 
Fixed end moment. 
 

ሺ𝐹𝐸𝑀ሻ஺஻ ൌ െ ௪௅మ

ଵଶ
ൌ െ ଵ଴ൈସమ

ଵଶ
ൌ  െ13.33 kN. m 

ሺ𝐹𝐸𝑀ሻ஻஺ ൌ ௪௅మ

ଵଶ
ൌ  ൅13.33 kN. m 

 
Stiffness factor. 

 
𝐾஺஻ ൌ 𝐾஻஺ ൌ ூಲಳ

௅ಲಳ
ൌ ଶ୍

ସ
ൌ 0.5I 

𝐾஻஼ ൌ 𝐾஼஻ ൌ  
𝐼஻஼

𝐿஻஼
ୀ 

಺
య

ൌ  0.333I 

𝐾஼஽ ൌ 𝐾஽஼ ൌ ூಳವ

௅ಳವ
ൌ ଵ.ହ୍

ସ
ൌ  0.375I 

 
Distribution factor. 
 

ሺ𝐷𝐹ሻ஺஻ ൌ ௄ಲಳ
∑ ௄

ൌ ௄ಲಳ

௄ಲಳା଴
ൌ ଴.ହ୍

଴.ହ୍ାஶ
ൌ  0 

ሺ𝐷𝐹ሻ஻஺ ൌ
𝐾஻஺

∑ 𝐾
 ൌ

𝐾஻஺

𝐾஻஺ ൅ 𝐾஻஼
ൌ ଴.ହ୍

଴.ହ୍ା଴.ଷଷଷ୍
ൌ  0.60 

ሺ𝐷𝐹ሻ஻஼ ൌ
𝐾஻஼

∑ 𝐾
ൌ

𝐾஻஼

𝐾஻஺ ൅ 𝐾஻஼
ൌ ଴.ଷଷଷ୍

଴.ଷଷଷ୍ା଴.ହ
ൌ  0.40 

ሺ𝐷𝐹ሻ஼஻ ൌ ௄಴ಳ
∑ ௄

ൌ ௄಴ಳ

௄಴ಳା௄಴ವ
ൌ ଴.ଷଷଷ୍

଴.ଷଷଷ୍ା଴.ଷ଻ହ୍
ൌ  0.47 

ሺ𝐷𝐹ሻ஼஽ ൌ ௄಴ವ
∑ ௄

ൌ
𝐾஼஽

𝐾஼஻ ൅ 𝐾஼஽
ൌ ଴.ଷ଻ହ୍

଴.ଷଷଷ୍ା଴.ଷ଻ହ୍
ൌ  0.53 



ሺ𝐷𝐹ሻ஽஼ ൌ ௄ವ಴
∑ ௄

ൌ ଴.ଷ଻ହூ
଴.ଷ଻ହூାஶ

ൌ  0 

 
Analysis of frame without side-sway. 
 

Table 12.8. Distribution table (no sway frame). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A௫ 

M஺஻ ൌ 17.52 kN. m 

M஻஺ ൌ 4.95 kN. m 

4 m 10 kN/m 

ሺ𝑏ሻ 

Joint A B C D 

Member AB BA BC CB CD DC 

DF 0 0.60 0.4 0.47 0.53 0 

FEM 

Dist. 1 

െ13.33 

 

൅13.33 

െ8.00 

 

െ5.33 

   

CO 

Dist. 2 

െ4.00   െ2.67 

൅1.25 

 

൅1.42 

 

CO 

Dist. 3 

  

െ0.38 

൅0.63 

െ0.25 

  ൅0.71 

CO 

Dist. 4 

െ0.19   െ0.13 

൅0.06 

 

൅0.07 

 

CO      ൅0.04 

Total െ17.52 ൅4.95 െ4.95 െ1.49 ൅1.49 ൅0.75 

D௫

M஽஼ ൌ 0.75 kN.m 

M஼஽ ൌ 1.49 kN.m 

4 m 

ሺ𝑐ሻ 



        

       

 

 

 

 

 

 

 

 

A௫ ൌ 23.14 kN 

𝐵 

10 kN/m 

𝐴 

𝐶

𝐷 

X 

D௫ ൌ 0.59 kN 

ሺ𝑑ሻ 

 

 

Table 12.9. Distribution table (sway frame). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Joint A B C D 

Member AB BA BC CB CD DC 

DF 0 0.6 0.40 0.47 0.53 0 

FEM 

Dist. 1 

൅133 

 

൅133 

െ79.8 

 

െ53.2 

 

െ47.0 

൅100 

െ53.0 

൅100 

CO 

Dist. 2 

െ39.9  

൅14.1 

െ23.5 

൅9.40 

െ26.6 

൅12.50 

 

൅14.10 

െ26.5 

CO 

Dist. 3 

൅7.05  

െ3.75 

൅6.25 

െ2.50 

൅4.7 

െ2.21 

 

െ2.49 

൅7.05 

CO 

Dist. 4 

െ1.88  

൅0.67 

െ1.11 

൅0.44 

െ1.25 

൅0.59 

 

൅0.66 

െ1.25 

CO 

Dist. 5 

൅0.34  

െ0.18 

൅0.30 

െ0.12 

൅0.22 

െ0.10 

 

െ0.12 

൅0.33 

CO 

Dist. 6 

െ0.09  

൅0.03 

െ0.05 

൅0.02 

െ0.06 

൅0.03 

 

൅0.03 

െ0.06 

Total ൅98.52 ൅64.07 െ64.07 െ59.18 ൅59.18 ൅79.57 

 

𝐴௫ ൌ ሾଵ଻.ହଶିସ.ଽହାሺଵ଴ሻሺସሻሺଶሻሿ

ସ
 ൌ 23.14kN 

𝐷௫ ൌ ଵ.ସଽା଴.଻ହ
ସ

ൌ  0.59 kN 

X ൌ  ሺ10ሻሺ4ሻ ൅ 0.59 െ 23.14 ൌ 17.45 kN



 

Analysis of frame with side-sway. 

 

 

 

 

 

 

 

 

 

A௫ 

M஺஻ ൌ 98.52 kN. m 

M஻஺ ൌ 64.07 kN. m 

4 m 

ሺ𝑒ሻ 

 

𝐴௫ ൌ ଽ଼.ହଶା଺ସ.଴଻
ସ

ൌ  40.65 kN 

 
𝐷௫ ൌ ଻ଽ.ହ଻ାହଽ.ଵ଼

ସ
ൌ  34.69 kN 

 

D௫ 

M஽஼ ൌ 79.57 kN. m 

M஼஽ ൌ 59.18 kN. m 

4 m 

ሺ𝑓ሻ

 

 

 

 

 

 

 
𝐴௫ ൌ  40.65 kN 

𝐵 

𝐴 

𝐶 

𝐷 

Y 

𝐷௫ ൌ 34.69 kN 

ሺ𝑔ሻ 
 

Y ൌ  40.65 ൅ 34.69 ൌ  75.34 kN 
 
𝜂 ൌ  ଡ଼

ଢ଼
ൌ ଵ଻.ସହ

଻ହ.ଷସ
ൌ  0.23 

 
Final end moment. 
 
𝑀஺஻ ൌ  െ17.52 ൅ ሺ98.52ሻሺ0.23ሻ  ൌ  5.14 kN. m 



𝑀஻஺ ൌ  4.95 ൅ ሺ64.07ሻሺ0.23ሻ  ൌ  19.69 kN. m 

𝑀஻஼ ൌ  െ4.95 ൅ ሺെ64.07ሻሺ0.23ሻ ൌ  െ19.69 kN. m 

𝑀஼஻ ൌ  െ1.49 ൅ ሺെ59.18ሻሺ0.23ሻ ൌ  െ15.10 kN. m 

𝑀஼஽ ൌ  1.49 ൅ ሺ59.18ሻሺ0.23ሻ ൌ  15.10 kN. m 

𝑀஽஼ ൌ  0.75 ൅ ሺ79.57ሻሺ0.23ሻ ൌ  19.05 kN. m 

 

 
 Chapter Summary 

 
Moment distribution method of analysis of indeterminate structures: The moment distribution 
method of analysis is an approximate method of analysis. Its degree of accuracy is dependent on 
the number of iterations. In this method, it is assumed that all joints in a structure are temporarily 
locked or clamped and, thus, are prevented from possible rotation. Loads are applied to the 
members, and the moments developed at the member ends due to fixity are determined. Joints in 
the structure are then unlocked successively, and the unbalanced moment at each joint is 
distributed to members meeting at that joint. Carry over moments at members’ far ends are 
determined, and the process of balancing is continued until the desired level of accuracy. Members’ 
end moments are determined by adding up the fixed-end moment, the distributed moment, and the 
carry over moment. Once members’ end moments are determined, the structure becomes 
determinate. 

 
 
 Practice Problems 

12.1 Use the moment distribution method to compute the end moment of members of the beams 
shown in Figure P12.1 through Figure P12.12 and draw the bending moment and shear force 
diagrams. EI = constant.  
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Fig.  P12.1. Beam. 
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Fig. P12.2. Beam. 
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Fig.  P12.3. Beam. 
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Fig. P12.4. Beam. 

 
 
 
 
 
 
 

Fig.  P12.5. Beam. 
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Fig. P12.6. Beam.

 
 
 
 
 

 
 
 

Fig.  P12.7. Beam. 
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Fig. P12.8. Beam. 
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Fig.  P12.9. Beam. 
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Fig. P12.10. Beam. 
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Fig.  P12.11. Beam. 
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Fig. P12.12. Beam. 



 
 
12.2 Use the moment distribution method to compute the end moment of the members of the 
frames shown in Figure P12.13 through Figure 12.20 and draw the bending moment and shear 
force diagrams. EI = constant.  
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Fig.  P12.13. Frame. 
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Fig. P12.14. Frame. 
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Fig.  P12.15. Frame. 
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Fig. P12.16. Frame. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.  P12.17. Frame. 
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Fig.  P12.19. Frame. 
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Chapter 13 

Influence Lines for Statically Indeterminate Structures 
 
13.1 Introduction 
 
The influence lines for statically indeterminate structures are obtained by the static equilibrium 
method or by the kinematic method, as was the case for determinate structures. The procedures for 
finding influence lines for indeterminate structures by these methods are similar to those outlined 
in chapter nine for determinate structures. The distinguishing feature between the graphs of the 
influence lines for determinate and indeterminate structures is that the former contains straight 
lines while the later consists of curves. The analysis and constructions of the influence lines using 
the equilibrium and kinematic methods are discussed in this chapter.  
 
13.2 Static Equilibrium Method 
 
To construct the influence line for the reaction at the prop of the cantilever beam shown in Figure 
13.1, first determine the degree of indeterminacy of the structure. For the propped cantilever, the 
degree of indeterminacy is one, as the beam has four reactions (three at the fixed end and one at 
the prop). Thus, the propped cantilever has one reaction more than the three equations of 
equilibrium. Considering the reaction at the prop as the redundant and removing it from the system 
provides the primary structure. The next step is to apply a unit load at various distances x from the 
fixed support and at the position where the redundant was removed. Then, compute the deflections 
at these points on the beam using any method. The redundant 𝐵௬ at the prop can be determined 
using the following compatibility equation: 
 
𝛿஻௑ ൅ 𝛿஻஻𝐵௬ ൌ  0  
 
From which 

𝐵௬ ൌ  െഃಳ೉
ഃಳಳ

                  

where 

𝛿஻௑ ൌ deflection at B due to the unit load at any arbitrary point on the primary structure at a 
distance x from the fixed support. 

𝛿஻஻ ൌ deflection at B due to the unit value of the redundant (i.e., 𝐵௬ ൌ 1). 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

𝐴 

ሺbሻ Primary beam subjected to unit load

𝐵

𝑥

𝛿୆ଡ଼

1 

𝐴 
𝐵 

1 ሺ𝑐ሻ Primary beam subjected to B௬ ൌ 1 

𝛿୆୆
1 

ሺ𝑑ሻ Influence line for B௬ 

1 

𝐴 

ሺaሻ Indeterminate beam 

𝐵 

𝑥 

B௬ 
Fig. 13.1. Cantilever beam. 

 

 Example 13.1 

Draw the influence lines for the reactions at supports A and B and the moment and shear force at 
point C of the propped cantilever beam shown in Figure 13.2a. 
 

 

 

 

 

 

 

 

 

 

1 

ሺ𝑏ሻ Influence line for B௬ 
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0.31 
0.09 
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ሺaሻ Indeterminate beam

𝐵
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B௬ 

5 ft 5 ft 5 ft 

𝐶 

A௬ 

M஺ 

Fig. 13.2. Propped cantilever beam.

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.91 
0.69 

0.37 

1 

ሺ𝑐ሻ Influence line for A௬ 

3.2 
3.38 

2.4 

ሺ𝑑ሻ Influence line for M஺ 

0.69 

0.31 

0.37 

0.09 
ሺ𝑒ሻ Influence line for V஼ 

3.1 

1.35 

1.85 

ሺ𝑓ሻ Influence line for M஼ 

Solution 
 
The degree of indeterminacy of the beam is one. By selecting the reaction at the prop as the 
redundant, the value of this redundant can be determined by solving the following compatibility 
equation when the unit load is located at any point x along the beam: 
 

                                                       𝛿஻௑ ൅ 𝛿஻஻𝐵௬ ൌ  0  
 

Therefore,                                    𝐵௬ ൌ  െ ഃಳ೉
ഃಳಳ

  

 

Using the deflection formulas provided in appendix A of this book, the deflections at the prop due 
to a unit load acting at a quarter span interval along the beam can be determined as follows: 



 
𝛿஻௑ ൌ  ௉

଺ாூ
ሺ𝑥ଷ െ 60𝑥ଶሻ 

𝛿஻ଵ ൌ  𝛿୆୅ ൌ 0 

𝛿஻ଶ ൌ  െ229.17 

𝛿஻ଷ ൌ  െ833.33 

 𝛿஻ସ ൌ  െ1687.5   

 𝛿஻ହ ൌ  െ2666.67 

 𝛿஻஻ ൌ  െ 𝛿஻ହ ൌ 2666.67 

The ordinates of the influence lines for the desired functions are tabulated in Table 13.1 

Table 13.1.  

𝑥ሺftሻ ሺ𝐸𝐼ሻ𝛿஻ 𝐵௬ 𝐴௬ 𝑀஺ 𝑉஼  𝑀஼  
0 0 0 1 0 0 0 
5 -229.17 0.09 0.91 -3.2 -0.09 1.35 

10 -833.33 0.31 0.69 -3.8 -0.31(L) 
0.69 (R) 

3.1 

15 -1687.5 0.63 0.37 -2.4 0.37 -1.85 
20 -2666.67 1 0 0 0 0 

 

 

 Example 13.2 

Draw the influence lines for the reactions at the supports A, B, and C of the indeterminate beam 
shown in Figure 13.3. 

 

 

 

 

 

 

 

𝐴 
𝐵 
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𝐶

𝑥 
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𝐴௬ 𝐵௬ 𝐶௬ 
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     ሺ𝑎ሻ Indeterminate beam  

Fig. 13.3. Indeterminate beam.
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𝐶

𝑥 
1 kN 

𝐴௬ 𝐶௬ 

1.5 m 1.5 m 

ሺ𝑏ሻ Primary beam subjected to  
unit load at B

Solution 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          

𝛿୆୅ ൌ  𝛿୆େ ൌ  0 

𝛿୆ଵ ൌ  𝛿୆ଶ ൌ  ቀଶ.ଶହ
ாூ

ቁ ሺ1.5ሻ െ ቀଵ
ଶ
ቁ ሺ1.5ሻ ቀ଴.଻ହ

ாூ
ቁ ቀଵ.ହ

ଷ
ቁ ൌ  3.09 

ଵ.ହ
ாூ

 
଴.଻ହ
ாூ

 
଴.଻ହ
ாூ

 
ሺ𝑐ሻ ಾ

ಶ಺
- - diagram for primary beam subjected

to unit load at B

 
𝐵 

1.5 m 1.5 m 

𝐶 

𝐴௬ ൌ ଶ.ଶହ
ாூ

 𝐶௬ ൌ ଶ.ଶହ
ாூ

 

1.5 m 1.5 m 

ଵ.ହ
ாூ

 
଴.଻ହ
ாூ

 
଴.଻ହ
ாூ

 

ሺ𝑒ሻ Conjugate beam for unit load at B
1 2 

𝐴 
𝐵 

3 m 3 m 

𝐶

𝐴௬ X ൌ 1 𝐶௬ 

ሺ𝑑ሻ Primary beam subjected to  
redundant X ൌ 1

𝐴



𝛿୆୆ ൌ  ቀଶ.ଶହ
ாூ

ቁ ሺ3ሻ െ ቀଵ
ଶ
ቁ ሺ3ሻ ቀଵ.ହ

ாூ
ቁ ቀଷ

ଷ
ቁ ൌ  4.50 

𝛿୆ଡ଼ ൌ  െ𝛿୆୆ ൌ  െ4.5 

When the unit load is at different points along the beam, the ordinate of the influence line for the 
redundant at 𝐵௬  can be computed using the compatibility equation: 
 

𝐵𝑦 ൌ   െ ഃా౔
ഃాా

 

At point A and C, 𝐵𝑦 ൌ 0                                                     

                                        

1
0.69 0.69 

ሺ𝑓ሻ Influence line for B௬ 
At point 1 and 2, 𝐵𝑦 ൌ య.బవ

ర.ఱ
ൌ  0.69          

At point B, 𝐵𝑦 ൌ  ర.ఱ
ర.ఱ

ൌ  1.0      

Now that By is known, the values of the ordinate of the influence lines for other reactions can be 
obtained using statics. For instance, to determine the ordinate of the influence line at point 1, place 
the unit load at point 1 and the value of the redundant when the unit load is at point 1 and solve as 
follows:       
 
 
 
 
 
Ordinates of influence line for 𝐴௬. 
   ൅↶ ∑ 𝑀஼ ൌ 0 

When the unit load is at point 1, 

െ𝐴௬ሺ6ሻ ൅ 1ሺ4.5ሻ െ 0.69ሺ3ሻ ൌ  0 

𝐴௬ ൌ ଶ.ସଷ
଺

ൌ  0.41 

When the unit load is at point 2, 

െ𝐴௬ሺ6ሻ ൅ 1ሺ1.5ሻ െ 0.69ሺ3ሻ ൌ  0 

𝐴௬ ൌ ଶ.ସଷ
଺

ൌ െ ଴.ହ଻
଺

ൌ  െ0.095 

When the unit load is at point 𝐴, 𝐴௬ ൌ  1 

When the unit load is at point B and C, 𝐴௬ ൌ  0   

Ordinates of Influence line for 𝐶௬. 

𝐵
𝐶

1 
𝐴

1 kN 

𝐴௬ 𝐶௬ 0.69 kN 
ሺ𝑔ሻ 

1 
0.41

0.095 

ሺℎሻ Influence line for A௬ 



   ൅↶ ∑ 𝑀஺ ൌ  0 

When the unit load is at point 1, 

𝐶௬ሺ6ሻ െ 1ሺ1.5ሻ ൅ 0.69ሺ3ሻ ൌ  0 

𝐶௬ ൌ െ଴.ହ଻
଺

ൌ  െ0.095 

When the unit load is at point 2, 

𝐶௬ሺ6ሻ െ 1ሺ4.5ሻ ൅ 0.69ሺ3ሻ ൌ  0 

𝐴௬ ൌ ଶ.ସଷ
଺

ൌ  0.41 

When the unit load is at point 𝐶, 𝐶௬ ൌ  1 

When the unit load is at point A and B,   𝐶௬ ൌ  0   

 

 

1
0.41 

0.095

ሺ𝑖ሻ Influence line for B௬ 

13.3 Influence Lines for Statically Indeterminate Beams by Kinematic Method 
 
In 1886, Heinrich Muller-Breslau, a German Professor, developed a procedure for the 
establishment of the shape of the influence lines for functions such as reactions, shears, moments, 
and axial forces in members without any computational effort. The influence lines obtained by this 
method are also referred to as qualitative influence lines, as there is no calculation involved. The 
Muller-Breslau method is based on the principle of virtual work. The procedure for this method, 
which is commonly referred to as Muller-Breslau’s principle, is stated as follows:  
 

The influence line for any function such as a reaction, shear, or moment of a structure  
can be represented by the deflected shape of a release structure obtained by removing  
from the given structure the restraint that corresponds to the particular function  
being considered, and then introducing a unit displacement or rotation in the direction  
and the location of the function being considered. 

 
When there is a need to obtain the ordinates for the influence lines while using the kinematic 
method, this procedure must be complemented by other analytical techniques, such as the method 
of singularity function, the Hardy Cross method of moment distribution, the energy methods, and 
the conjugate beam principle. In such instances, the procedure is as follows: 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Example 13.3 

Using the Muller-Breslau’s principle, draw the qualitative influence lines for the vertical reactions 
at supports A, B, and C, the shear and bending moment at section 𝑋ଵ, and the bending moment at 
support D of the five-span beam shown in Figure 13.4a.  
 
Solution 
 
Qualitative influence line for the vertical reactions at support A, B, and C. 
 
To draw the qualitative influence line for 𝐴௬, first obtain the release structure by removing the 
support at A. Applying a unit displacement at point A in the release structure, in the positive 
direction of 𝐴௬, will result in the deflected shape shown in Figure 13.4b. The resulting deflected 
shape represents the shape of the influence line of 𝐴௬. To obtain the shape of the influence lines 
for 𝐵௬ and 𝐶௬, similar procedures are followed and will yield the deflected shapes shown in 
Figure13.4c and Figure13.4d. 
 
Qualitative influence lines for the shear at section 𝑋ଵ. 
 
The qualitative influence line for the shear at section 𝑋ଵ is drawn by first breaking the beam at the 
section and then applying two vertical forces in a manner that will cause a positive shear on the 
left and the right portion of the break. The resulting deflected shape is shown in Figure 13.4e. 
 
Qualitative influence lines for the bending moment at section 𝑋ଵ. 
 

  
•  Obtain the released structure by removing the restraint that 

corresponds to the function whose influence line is desired. 
• Apply a unit displacement or rotation to the released structure in the 

direction and at the location of the function whose influence line is 
desired. 

• Draw the deflected shape of the released structure. This corresponds 
to the influence line of the function being considered. 

• Place a unit load at the location and in the direction of the function 
being considered, and find the value of the ordinate of the influence 
line using statics. 

• Using geometry, determine the value of other ordinates of influence 
using geometry. 

Procedure for Analysis of Influence Lines by the Kinematic 
Method  



The influence line of the moment at section 𝑋ଵ is found by first inserting an imaginary hinge at the 
section 𝑋ଵ and then applying a pair of positive bending moments adjacent to both sides of the 
hinge. The resulting deflected shape shown in Figure 13.4f represents the shape of the qualitative 
influence line for the bending moment at the section. 

Qualitative influence lines for the bending moment at support D. 

The influence line for the moment at the support D is obtained by first releasing the restrain at the 
support, inserting a pin at point D of the release structure, and then applying a pair of moments 
adjacent to both sides of the hinge in the positive direction of 𝑀஽. The resulting deflected shape 
shown in Figure 13.4g represents the shape of the qualitative influence line for the bending moment 
at the section.  

Fig.  13.4. Five െ span beam. 
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Chapter Summary 

Influence lines for indeterminate structures: The procedure for the construction of influence 
lines for indeterminate structures by the equilibrium method and the Muller-Breslau principle were 
discussed, and a few example problems were solved in this chapter. Unlike the influence lines for 
determinate structures, which are straight lines, the influence line for indeterminate structures are 
curvilinear. 

Practice Problems 

13.1 Using the equilibrium method, draw the influence lines for the vertical reactions at ACD of 
the beam shown in Figure P13.1. Also, draw the influence line for the shear force and bending 
moment at a section at B of the beam. 

13.2 Using the equilibrium method, draw the influence lines for the vertical reactions at the 
supports of the indeterminate beam with overhanging ends, as shown in Figure P13.2. 

𝐴 

𝐶 

20 ft 

𝐵 
𝐷 

10 ft 10 ft 

Fig.  P 13.1. Beam.        𝐸𝐼 ൌ constant 

𝐴 𝐵 

10 ft 10 ft 

𝐸

10 ft 10 ft 

Fig.  P 13.2. Indeterminate beam.        𝐸𝐼 ൌ constant 

𝐶 𝐷



13.3 Using the equilibrium method, draw the influence lines for the vertical reactions at supports 
A and C of the propped cantilever beam shown in Figure P13.3.  

13.4 Using Muller-Breslau’s principle, draw the qualitative influence lines for the vertical 
reactions at supports A, B, and C, positive shear and moment at section 𝑋ଵ.

13.5 Using Muller-Breslau’s principle, draw the qualitative influence lines for the vertical 
reactions at supports E and F, the negative moment at C, negative shear and moment at section 𝑋ଵ. 

13.6 Using Muller-Breslau’s principle, draw the qualitative influence lines for the maximum 
vertical reactions at supports A and B, maximum negative shear and moment at section 𝑋ଵ. 

Fig.  P 13.3. Propped cantilever beam.    𝐸𝐼 ൌ constant 
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Fig.  P13.4. Beam. 
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Fig.   P13.5 Beam. 
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Fig.   P13.6. Beam. 
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Errata-Structural Analysis, Felix F. Udoeyo 

1. Answer to 𝐴! in Problem 3.3 is 14.14 kN

Correction: 

→ +$𝐹! = 0

−16	𝑐𝑜𝑠	75° + 𝐴! = 0

𝐴! = 4.14	kN 𝐴! = 4.14	kN →

2. Answer to 𝐴" in Problem 3.10 is 6.17 kips

Correction: 

↑ +$𝐹" = 0 

𝐴" + 	15.17 − (0.5)(3)(6) = 0 

𝐴" = −6.17	kips 𝐴" = 6.17	kips ↓

3. Answer to 𝐹" and 𝐸"	in Problem 3.12 are each 30 kN

Corrections: 

𝐹 

𝐵 

𝐸 

𝐶 
𝐴 𝐷 

E" F 

(𝑐) 

E! 

𝑃 = (4)(7) 
𝑃 = E#

$
F (4)(8) 𝑃 = E#

$
F (4)(8) 



 

+↶ ∑𝑀% = 	0    
 
  K!" × 4 × 8MK

!
# × 4M − (4 × 7)K

$
"M − K

!
" × 4 × 8MK& +

!
# × 4M + 7𝐹" = 	0 

 
𝐹" = 	30	kN                                                              𝐹" = 	30	kN ↑     

	
                                                                       
+↑ ∑𝐹" = 0   
𝐸" + 30 − 2E

#
$
× 4 × 8F − 4(7) = 	0 

𝐸" = 30	kN                                                             𝐸" = 	30	kN ↑    
 
 

4. Change the roller support at B to a pinned support to provide stability for member BD, 
and repeat the analysis. 

 

Corrections: 
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3 m 
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4 m 

 4 m 

(𝑎) Fig. 	3.21  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+↶ ∑𝑀' = 	0    
  	
−15(4) + 𝐵!(8) = 	0 
𝐵! = 	7.5	kN                                                        𝐵! = 7.5	kN → 
 
 

+	→ ∑𝐹! = 	0   
−𝐴! − 15 + 7.5 + K!" × 8 × 20M = 	0  
𝐴! = 	72.5	kN                                      𝐴! = 	72.5	kN ←      
 

+↶$𝑀( = 	0 

 

15 kN 

12 kN 

20 
kN/m 

𝐵 

𝐷 

𝐴 

𝐶 

A𝑥 
MA 

A𝑦 𝐵𝑦 
(𝑏) 

𝐵𝑥 

15 kN 

12 kN 

𝐵 

𝐷 

𝐴 

𝐶 

A𝑥 
MA 

A𝑦 
(𝑐) 

𝑃 = 4$
%
5 (8)(20) 

𝐵𝑦 

𝐵𝑥 



𝑀( + 6 × 0 − E
#
$
× 8 × 20F E#

)
× 8F − 12(3) + 15(4) = 	0 

 
𝑀( = 189.33	kN.m                            𝑀( = 189.33	kN.m ↶       
 
 
+↑ ∑𝐹" = 0   
  	
𝐴" + 0 − 12 = 0 
𝐴" = 12	kN                                        𝐴" = 12 ↑       
 
 

5. The missing diagrammatic sketch of the type of loading in row 6 of Table 11.1 is 
replaced. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 11.1. Fixed-end moments. 
Type of loading  (FEM)&' (FEM)'& 
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6. The computed distribution factors for members BA and BC are correctly placed in Table 
12.1. 

   

Correction: 

Table 12.1 Distribution Table 

 

 

 

 

 

 

 

 

 

 

 

Joint A B C 
Member AB BA BC CB 
DF 0 0.67 0.33 0 
FEM 
Bal 

-12 
 

+12 
+24.12 

-48 
+11.88 

+48 
 

CO +12.06   +5.94 
Total +0.06 +36.12 -36.12 +53.94 
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